Chemical Complexity Matters

Differential Mobilization of Mineral-Associated Organic Matter Driven by Functionally Distinct Rhizodeposits

Tobias Bölscher, Hui Li, Mariela Garcia Arredondo, Zoe Cardon, Carolyn Malmstrom, Matthew Winnick, Marco Keiluweit

© Authors. All rights reserved.

LUND UNIVERSITY UMassAmherst

Research questions

What exudate-driven mechanisms cause the mobilization of mineralassociated organic matter (MAOM)?

© Authors. All rights reserved.

MAOM mobilization mechanisms

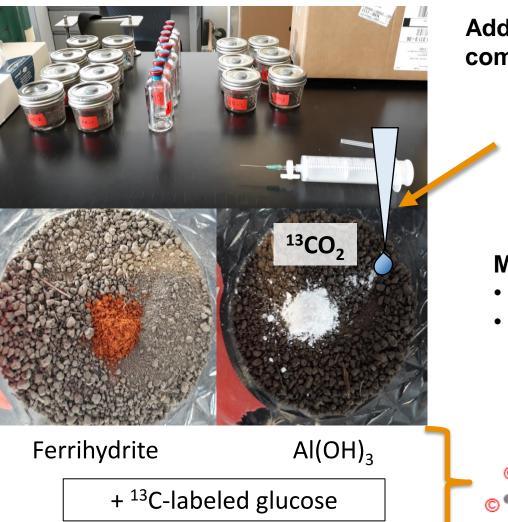
Direct mechanisms:

- Ligand-promoted dissolution (e.g., oxalic acid)
- Reductive dissolution (e.g. catechol)

Indirect mechanisms:

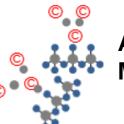
 Microbial-mediated mobilization stimulated by less reactive rhizodeposits (e.g. sugars)

Hypothesis


- 1. Direct mechanism (e.g. ligands, reductants) mobilize more MAOM than indirect microbialmediated mechanisms (e.g. sugars).
- Reducible minerals (e.g. ferrihydrite) are more susceptible than non-reducible minerals (e.g. Al hydroxide)

© Authors. All rights reserved.

Microcosms – MOA in soil



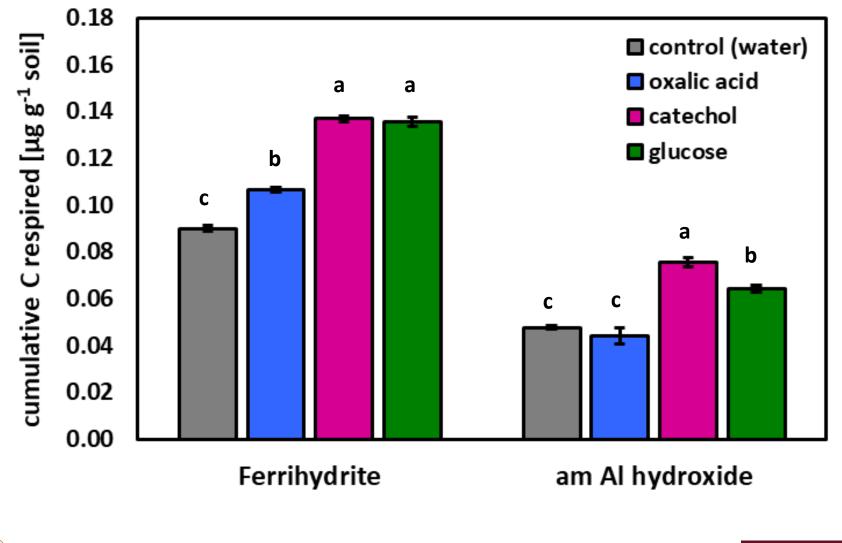
Addition of distinct rhizosphere compounds (3 pulses over 72 h):

- Oxalic acid (i.e. ligand)
- Catechol (i.e. reductant)
- Glucose (i.e. less reactive)
- Water (i.e. control)

Measurements:

- ¹³C respiration
- Sequential extraction (data not shown)

Artificial, ¹³C labelled MOAs mixed into soil

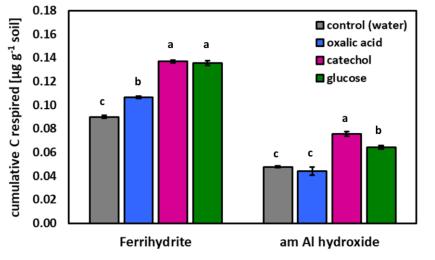


LUND UNIVERSITY

© Authors. All rights reserved.

UMassAmherst

Mineralization of liberated MAOM



© Authors. All rights reserved.

LUND UNIVERSITY

UMassAmherst

Summary

- Ferrihydrite more vulnerable than am Al hydroxide
- Catechol and glucose mobilize more MAOM than oxalic acid
- Catechol (reductant) mobilized MAOM from non-reducible am Al hydroxide → microbial mediation?

UMassAmherst

Conclusion

Root exudates mobilize equally or more MAOM via microbial-mediated mechanisms compared to direct mineral dissolution.

LUND UNIVERSITY

© Authors. All rights reserved.

Acknowledgements

M Keiluweit

VI Winnick

UMassAmherst

Andrea Sroka-Rivera Nathan Chin Morris Jones Isobel Arthen Carolyn Anderson Carlos Po

• International Postdoc VR 2017-00162

M Garcia

Arredondo

Η

- Subsurface Biogeochemical Research award No. DE-SC0019477
- Terrestrial Ecosystem Science award No. DE-SC0019142

