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Motivation 

The mean oceans transport to the 
 Barents Sea (Smedsrud et al., 2013) 

The two hypothesized positive feedback loops 
for the Barents Sea (Smedsrud et al., 2013) 



Aim of this work: 

 examine the role of Atlantic water volume (AW) inflow into the 
Barents Sea in changes of regional winter cyclone activity, based 
on ensemble simulations with a coupled regional climate model 
(RCM) HIRHAM-NAOSIM.  



Data and methods 

 6-hourly mean sea level pressure data (MSLP), monthly data 
for sea-ice concentration (SIC), sea surface temperature 
(SST), surface sensible and latent heat fluxes (LHF, SHF), 
near-surface air temperature (SAT), temperature at 500 hPa 
(T500), ocean temperature (T), and zonal current (U) from an 
ensemble of 10 (with different initial sea ice and ocean 
conditions) hindcast simulations with RCM HIRHAM-
NAOSIM for the Barents Sea (65-850N, 200-600E). 

 Analysis period–1979-2016 and season–DJF. 
 Cyclone identification method (based on MSLP) – (Bardin and 

Polonsky, 2005; Akperov et al., 2015). 



1. Cyclone frequency(fr.) = total number/years; [cyclones 
per month] 

2. ∆P (cyclone depth) = |Pcenter-Plast|, where Pcenter– 
central pressure, Plast– pressure on outermost 
closed isobar; [hPa]  

3. R(cyclone radius)=1/n*sum(Ri), where i=1,n; [km] 
 
Measure of cyclone intensity Ek~(δp)2  (e.g. Golitsyn et 

al., 2007; Simmonds and Keay, 2009) 
 
Deep (intense) cyclones – 95% percentile of fr. (∆P ), 

20 hPa 
Non-deep (not instense) cyclones < 20hPa 
 

 

Cyclone’s identification method 

 
1. Identification of cyclones using 6-hourly MSLP data (Bardin and Polonsky, 2005; 

Akperov et al., 2007): 
 -  Cyclones are determined as domains that contain the single local minimum of the 

MSLP (hPa) enclosed within the maximum closed contour. 
   

2. Cyclone’s tracking: 
-  nearest neighbour analysis 
   Max distance between two consequent 6-hour steps ≤ 600 km; 

Ri Pcenter 

Plast Rn 

R1 



Calculation of the Atlantic water inflow and heat transport 
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where ν - zonal ocean current, T – ocean temperature, T0 – reference temperature (00C), A 
represents the BSO (area between Svalbard and Norway) (calculation performed for water 
column till 337 m) 

- AW volume inflow  
    (Sv = 106 m3/s)  

- ocean heat transport 
    (TW = 1012 W) 

Barents Sea Opening (BSO) 
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Calculation of the Atlantic water inflow and heat transport  

a b 

Annual cycle of (a) water volume (Sv) and (b) heat transport (TW) through the 
Barents Sea from simulations. 

2.3 (±0.3) Sv 57.2 (±7.9) TW 

Observations: 
2.3 Sv, 70 TW (Smedrud et al., 2013) and 55 TW (Tsobouchi et al., 2018).  
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Interannual variability of AW volume through the Barents Sea in winter (DJF) 
from an ensemble simulations. 

Compositing of Atlantic water inflow  for DJF 

Low and high AW inflow cases were 
selected when the deviation of the 
AW inflow from the ensemble mean 
was larger than one standard 
deviation.  



Composite difference “High minus low AW inflow in winter for (a) sea ice concentration, 
(b) sea ice thickness (m), (c) surface air temperature (K; color shading) and total 
(latent+sensible) surface turbulent heat flux (W/m2; isolines), (d) sea level pressure 
(hPa; color shading) and geopotential height at 250 hPa (gpm; isolines) for winter (DJF).  

a b 

c d MSLP, [hPa] SAT, [K] 

depth, [m] SIC, [m2/m2] 
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c Wind shear, [%] 

Brunt-Vaisala frequency (static stability) [%]  Eady growth rate, %] 
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- Eady growth rate, 1/day 

- Brunt-Vaisala frequency, 1/day 

where f is the Coriolis parameter, V is the horizontal 
wind speed, z is the height.  



Composite difference “High minus low AW inflow in winter” for frequency of 
occurrence of (a) non-intense cyclones (depth<20 hPa), (b) intense cyclones 
(depth ≥ 20 hPa)  and (c) cyclone size histogram  for the Barents Sea cyclones. 
for DJF.  

intense cyclone frequency [per season] 

Non-intense cyclone frequency [per season] 

a 

b 



Conclusions 
 The model quite well reproduces the connection between AW inflow 

and climate variability in the Barents Sea 
 

 Increased AW inflow into the Barents Sea leads to increased 
baroclinicity in the lower troposphere and thus favorable conditions 

for cyclone activity  
 

 An increased frequency of cyclones, particularly of intense cyclones, 
appears over the Barents Sea in years with high AW inflow, 
accompanied by an increase of cyclone depth (intensity) and size 
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