

C O L L È G E DE FRANCE CNIS

Aix*Marseille

🔹 A×Midex

cerege

Magali Rizza, Brice Lebrun, Lionel Siame, Valéry Guillou, Régis Braucher, ASTER Team

https://thegateproject.cerege.fr/

GATE : Breakthroughs in Quaternary Geochronology to fill in a key gap of knowledge in Active Tectonics.

We propose to develop complementary approaches to accurately date seismic-related late-Quaternary morphological surfaces related to through an exhaustive, detailed and unique direct comparison of TCN and OSL dating methods, which are often in disagreement.

OSL settings

As previous works have shown the difficulties of OSL dating in Taiwan, particular attention has been paid to luminescence characteristics of quartz and potential dosimetry issues.

EGU 2020 - RIZZA et al.

Alluvial terraces in Western Foothills

120.6° E

Topographic profile (next slide)

CS2-S1

Jhushan terrace

▲ alt. 60 m

CHELUNGPU FAULY

r. 440 m

HANGHUA FAUL

23.8°N

0500

CHUSHIANG THRUST

23.8

120.6°

🔺 alt. 1100 m

The Choshuei tableland

Our study case is located in Western Foothills of Central Taiwan, south of the Choushui River.

24°N

There, slip on the Changhua blind thrust fault has caused the eastward tilt of a wide flight of fluvial terraces but slip rates on frontal faults are still debated due to large epistemic uncertainties in dating alluvial surfaces with OSL and TCN methods.

Alluvial terraces in Western Foothills

Previous geochronological works done in the area

Taking advantage of a natural exposure, we collected 10 samples for ¹⁰Be dating complemented by 14 OSL samples along a 7m-depth profile.

Stratigraphy and sampling strategy

TCN Results and interpretation

The depth distribution of ¹⁰Be concentrations show a complex depositional history with at least two depositional sequences, modelled to be older than ~38.7 ka and ~50 ka.

For more details in TCN modelling see methodology described in Fig. 8 from Rizza et al. (2019) DOI: 10.1029/2018TC005188

Dose rate determination

In-situ measurements made with a portable gamma spectrometer (not for OSL 1 to 3)

EGU 2020 - RIZZA et al.

Dose rate determination

Lebrun et al., in prep

Measurements are made in a new OSL lab at CEREGE, Aix-en-Provence, France.

CC

Components study : fast ratio investigations

OSL signal consists of three components: a fast, a medium and a slow one... Our deepest samples present a signal with medium and slow components, characteristics not seen in upper samples.

 (\mathbf{i})

BY

(cc)

Results and interpretation

Results and interpretation

This study shows that it is informative to have an exhaustive, detailed, and direct comparison between dating methods on a single depth profile and allow a more detailed understanding of processes affecting alluvial deposits ... with a more complex history than expected : 4 stratigraphic units and possible changes in the primary sources of the sands.

Perspectives

1) Dating our other OSL samples (in progress)

2) Overcome OSL signal difficulties of lower unit

Look for high saturating quartz : the super-grain technique

use small sized grain

Investigate De distributions (single-grain)

take advantage of new OSL signals (TT-OSL, VSL)

make use of k-feldspars (IRSL)

EGU 2020 - RIZZA et al.