Chamber studies of NO₃ reactivity during the oxidation of isoprene

MAX PLANCK INSTITUTE FOR CHEMISTRY

 $+ NO_3 \rightarrow ?$

EGU General Assembly 2020 Sharing Geoscience Online

Patrick Dewald, Nils Friedrich, Justin Shenolikar, Franz Rohrer, Ralf Tillmann, David Reimer, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Steven S. Brown, Hendrik Fuchs, John N. Crowley and the NO3ISOP campaign team

Motivation: Why investigating NO₃ + isoprene?

- Isoprene is the major (non-methane) VOC from biogenic emission sources
- The nitrate radical (NO₃) becomes an important oxidizing agent at night-time
- > Products from isoprene oxidation by NO_3 can form secondary organic

aerosols (SOA) -> irreversible NO_x removal from gas phase

Guenther et al. Geosci. Model. Dev. 2012, 5, 1471. Ng et al. Atmos. Chem. Phys. 2017, 17, 2103.

i)

- 2 -

The NO₃ + isoprene system: Primary & secondary oxidation

- 3 - Wennberg et al. Chem. Rev. 2018, 118, 3337. Jenkin et al. Atmos. Chem. Phys. 2015, 15, 11433. Schwantes et al. J. Phys. Chem. A 2015, 119, 10158.

intensive product study of the NO₃ + isoprene system at the atmospheric simulation chamber SAPHIR of Forschungszentrum Jülich (Germany) in August 2018

Key features of SAPHIR chamber

- -> volume: 270 m³, surface: 320 m²
- -> FEP double-wall
- -> ambient p and T
- -> shutter system for exposure to sunlight
- 22 experiments under different conditions (high/low RO₂ or HO₂, dry/humid, daytime/nighttime, aerosol)
 NO₃ formation from NO₂/O₃ injections

- Better understanding of secondary nighttime and daytime oxidation chemistry
- > Testing of chemical mechanisms (especially $NO_3 + RO_2$, $RO_2 + RO_2$, $RO_2 + HO_2$ reaction paths) at different atmospheric conditions

Direct measurements of k^{NO_3} via CRDS

- > Ambient or synthetic air (SA) mixed with NO₃ from source
- Remaining NO₃ after reaction in flowtube reactor quantified via CRDS
- Extraction of k^{NO_3} from NO₃ depletion in ambient air compared to SA

-> k^{NO_3} exclusively from VOCs after correction for NO₂, NO and reactor wall losses

 (\mathbf{i})

- 6 -

Comparison to VOC measurements - Case study

$$k^{NO_3} = \sum k_i \cdot [VOC]_i$$

 k_i : rate coefficient for reaction NO₃ + VOC

- NO₃ reactivity equal to summed first-order loss rates attributed to all VOCs in chamber (isoprene only for most experiments, i.e. $k^{NO_3} = k_{NO_3+}$ ↓ · [↓])
- Isoprene mixing ratios available from PTR-ToF-MS measurements

Comparison to VOC measurements - Overview

- Linear regression of correlation plot between k^{NO3} and ∑k_i[VOC]_i yields slope of 0.96 for whole data set -> measured can be fully assigned to primary oxidation step of VOCs
- Measured reactivity can be fully assigned isoprene (and propene or monoterpenes if present) within uncertainties

 > insignificant contribution of nonradical oxidation products to k^{NO3}
 > corresponds to predictions of MCM

Comparison to unstationary-state calculations

$$k_{nss}^{NO_3} = \frac{k_{NO_2+O_3}[O_3][NO_2] - \frac{d[NO_3]}{dt} - \frac{d[N_2O_5]}{dt}}{[NO_3]}$$

- Unstationary-state calculations from NO₃, O₃, NO₂ and N₂O₅ measurements lead to overall NO₃ reactivity k^{NO₃}_{nss} including every loss path
- k^{NO3}_{nss} is on average a factor of ~1.85 higher than measured k^{NO3} during experiments without any seed aerosol

Remaining reasons for discrepancy

- NO_3/N_2O_5 losses on chamber walls
- Species not sampled by CRDS, most likely <u>RO₂ radicals</u>

Estimation of NO_3/N_2O_5 wall losses in SAPHIR chamber

During isoprene-free periods chamber walls remain only loss source -> used for quantification

$$k_{nss}^{NO_3} = k_{wall}^{NO_3} + k_{wall}^{N_2O_5} K_{eq}[NO_2]$$

y intercept slope x

 Direct and indirect NO₃ wall loss rate too small to explain higher k^{NO3}_{nss} during isoprene oxidation

Comparison to model calculations (MCM v 3.3.1)

Impact of RO₂ assessed with MCM Case study: Experiment on August 10 Model 1: MCM v3.3.1 with SAPHIR chamber characteristics

Model 2: same as Model 1 but with doubled $k_{NO_3+RO_2}$ of 4.6 $x \ 10^{-12} cm^3 molceule^{-1}s^{-1}$

- Model 1 (MCM) expects additional NO₃ reactivity of only ~22% from secondary oxidation with RO₂ radicals as main contributor
- Agreement would be achieved if generic rate coefficient of NO₃ + RO₂ in MCM would be doubled

Jenkin et al. Atmos. Chem. Phys. 2015, 15, 11433. for the MCM isoprene degradation scheme

Directly measured NO₃ reactivities can be fully assigned to primary oxidation of isoprene

- -> Secondary oxidation of non-radical products by NO₃ is insignificant
- -> consistent with current version of MCM
- NO₃ reactivities derived from unstationary-state calculations are a factor of 1.85 higher than measured k^{NO_3}
 - -> additional reactivity might be caused by reaction of NO₃ with RO₂ radicals
 - -> current version of MCM expects additional reactivity from RO₂ of 22% only
 - -> rate coefficient of NO₃+RO₂ in MCM has to be doubled to 4.6 x 10⁻¹²cm³molceule⁻¹s⁻¹ to bring model results and measurements into agreement

