State tagging for
improved earth and
environmental data
quality assurance

Michael Tso (@Michael_ts0), Pete Henrys,
Sue Rennie, and John Watkins
8th May, 2020

European Geosciences Union (online)

Manuscriptjust published in

Frontier in Environmental Science (2020)

10.3389 /fenvs.2020.00046
@) temetooy  @UK_CEH



https://doi.org/10.3389/fenvs.2020.00046

Highlights

* Aclustering-based state tagging framework is
proposed to improve QA of environmental data

* Very efficientand applicable to virtually any
type of point-based time series data

* Give greater confidence for users to use third-
party data and encourage collaborative research

 Web applications available to explore the
method
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Environmental data in a big data age

* Long-term monitoring: (i.) form the foundation
against which hypotheses can be formed and tested,
(ii.) emerging trends determined and (iii.) future
scenarios projected

* Environmental data explosion: more likely to use
open/third party data to validate and compare
observations, potentially from collaborative
platforms in the cloud

* Data providers should not depend on users to verify
the quality of datasets individually, but provide QA
and QC information to assist this

* Can we provide a general tool to give users some idea
about data quality?

UK Centre for
Ecology & Hydrology



Motivation

* Currently, static range check is the most common QC procedure for
environmental data

* A genericand efficient machine learning tool to provide contextual
information to produce out-of-range flags and understand variability of data

* Theidea of “state” recognizesthe acceptable or likely range of observed
values depends on the state in which the system is in

* Goal: tag each observed value with an arbitrary calculated state
number from contextual data and flag if out of the predicted state range (e.g.
exceed mean +/- 2 std. dev.)
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State tagging: overview
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State tagging: the concept and design
considerations

* Unsupervised and efficient: quick and flexible to implement to a large
variety of datasets; labelled data may not be available

* Afirst-pass: Experts or users can interpret the state tagging results
and conduct further analysis and quality checks using their subject-
specificknowledge

* One state per data point: fuzzy methods are not suitable

* The definition of the identified states is purely statistical and is open
to expert interpretation
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Applications:
try these apps yourself now!

* Moth and butterfly data, UK Environmental Change Network (ECN),
part of LTER-Europe

https://statetag-ecnmoth.datalabs.ceh.ac.uk

* Lake chemistry data, UK Cumbrian Lakes Monitoring scheme
https://statetag-lakes.datalabs.ceh.ac.uk

* Agenericversion: upload your own data (R Shiny source code
included)

https://statetag-generic.datalabs.ceh.ac.uk
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Associate states to
observed data and attach
prediction intervals

Choose observation to show: 4.

TOCA -

Prediction intervals opti
D 68% (1sd) ® 95% (2sd) © 995%(3s.d.) Change

if needed
@ crop negative prediction intervals

Observed variable and derived prediction intervals

states
e 1
* 2
40- * 3
* 4
o
3 e 5
o
-]
20-
o.
) \ ) . )
2008 2009 2010 2011 2012
Date
& Download tagged data 5




Temperature (°C)

Rainfall (mm) Solar Radiation (W m )

Windspeed (m s)

Value

ECN example: state definition

Clustering of ECN system state data (T08)
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Example from the UK ECN
site of Wytham (part of
the LTER network).

Automatic weather station
data are used for state
tagging via K-means
clustering.

Observational variables
are from daily moth traps
and (seasonal) butterfly
traps.



ECN example: 95% prediction
intervals

ECN moth/butterfly counts (T08) and derived prediction intervals based on clustering states
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Water temperature 1m (°C)

Wind speed (m s)

Solar radiation (W m‘z)

total sum of suares.

. Clustering of Lakes data (BLEL)
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Clustering of Lakes state data (BLEL)
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Lakes example: state definition

Example from the
small English lake
of Blelham Tarn.

Automatic buoy
data are used for
state tagging via
K-means
clustering.

Observational
variables are
from manual
sampling of lake
biochemistry.
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Total chlorophyll a:

Dissolved silicon:

Lakes example: 95% prediction
intervals

Nitrate:
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Discussion and outlook

* Our method works for any time series of
point data, which is very common in many
earth and environmental applications

* Itcurrently takes no consideration of time
(i.e. the order of data is not important)

e Future work can extend its application to
various types of spatial data

e Itcan potentially be used to identify whether
there are systematic change in the system
over time

UK Centre for
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Data availability

All data used are available through the following DOIs, hosted by the
Environmental Information Data Centre (EIDC),a NERC Data Centre hosted by
UKCEH.

App source code (generic version): https://doi.org/10.5285/1de712d3-081e-
4b44-b880-b6alebf9fcd8 (Tso 2020)

ECN data

e Butterflies: https://doi.org/10.5285/5aeda581-b4f2-4e51-b1a6-
890b6b3403a3 (Rennie etal., 2017a)

« Moths: https://doi.org/10.5285/a2a49f47-49b3-46da-a434-bb22e524c5d2
(Rennie etal.,2017b)

UK CEH Cumbrian Lakes monitoring scheme data(Blelham Tarn)

e Automatic buoy: https://doi.org/10.5285/38{f382d6-e39e-4e6d-9951-
1f5aa04ala8c (Jones and 509Feuchtmayr, 2017)

* Long-term manual sampling data: https://doi.org/10.5285/393a5946-8a22-
4350-80f3-a60d753beb00511 (Maberlyetal., 2017)
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