Influence of cropping and fertilization on soil pore characteristics in a long-term field study

David Nimblad Svensson, Jumpei Fukumasu, Gunnar Börjesson, and John Koestel Swedish University of Agricultural Sciences, Soil and Environment, Uppsala, Sweden email: david.nimblad.svensson@slu.se

Motivation and aim

- Larger porosities and well connected pores are beneficial for crop growth as they improve availability of oxygen, water and nutrients
- Additions of organic amendments are generally associated with larger porosities and better connected pore-networks
- Mineral fertilizer is often claimed to lead to degraded pore networks
- Bare fallows should lead to heavily degraded pore-networks due to the lack of carbon and reduced biological activity

In this study, we used X-ray microtomography to investigate the pore space properties of the three contrasting treatments in a long-term fertilization experiment in Sweden started in 1956:

- bare fallow
- mineral fertilizer (calcium nitrate)
- farmyard manure (FYM)

Material and methods

E	D	В	С	F	Α	G	0	Μ	L	Н	J	K	1	Ν
60	59	58	57	56	55	54	53	52	51	50	49	48	47	46
Μ	L	J	0	н	N	Ι	K	G	E	С	В	F	Α	D
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ν	Н		K	L	J	Μ	0	Α	F	Е	В	D	С	G
30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A	В	С	D	E	F	G	Н	1	J	K	L	Μ	Ν	0
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The experiment consists of 2 by 2 meter plots. Each treatment is replicated 4 times.

- A bare fallow
- C calcium nitrate
- J farmyard manure (FYM)

We sampled each two small (diameter 22.2 and height 25 mm, X-ray voxel edge length: 15 μ m) and two large columns (diameter 65.5 and height 74.8 mm, X-ray voxel edge length: 90 μ m) per replicated plot, i.e. eight small and eight large columns per treatment.

- The image shows examples of the pore and biopore space for the bare fallow, calcium nitrate and farm-yard manure treatments for the large columns
- The biopores in the farm yard manure had the largest diameter

- The visible porosity in the 150-500 µm size class was significantly higher for the calcium nitrate and farm-yard manure treatments compared to the bare fallow.
- A larger difference may have been found if the plots had been managed with heavy machinery instead of by hand.
- Furthermore, the application of the FYM was done almost two years prior to the sampling and fresh organic matter might be more important for the porosity.
- The quality of the manure should also be considered as it could contain high levels of monovalent cations which have a dispersive effect.

Porosities from the small columns of different pore diameter ranges

- The bars in the graph show the porosity and the line the organic carbon content.
- This increase in SOC content was accompanied with an increase in total porosity when comparing the FYM to the bare fallow, but not compared to the Ca(NO₃)₂

Small columns	Bare fallow	$Ca(NO_3)_2$	FYM
Euler	29707±2677 a	2111±7317 ab	643±4022 b
Gamma	0,88±0,02 b	0,96±0,01 a	0,96±0,01 a
Critical pore diameter (µm)	205±12	221 ± 50	267±32
Surface area connected to top (cm ²)	96±13	151±22	114 ± 29
Large columns			
Euler	5228 ± 1994	6788±2627	202±3890
Gamma	0,77±0,07 b*	0,90±0,02 ab*	0,93±0,02 a*
Critical pore diameter (µm)	707±130	534 ± 56	820±168
Surface area connected to top (cm ²)	$429\pm55b$	729±56a	$724\pm85a$

- All connectivity measures indicated that the FYM-treatment had a better connectivity.
- This may be partly because of the larger biopores

Conclusions

- The FYM and calcium nitrate had a higher visible porosity compared to the bare fallow.
- The connectivity measures indicated that the FYM had a higher connectivity
- Calcium compensated for the lower SOC in the calcium nitratetreatment. Option for improving soil structure without organic amendment.
- Future studies should take the quality of the manure into account