Accounting for Non-stationarity in Extreme Snow Loads a Comparison with Building Standards in the French Alps E. Le Roux, G. Evin, N. Eckert, J. Blanchet, S. Morin

https://doi.org/10.5194/nhess-2020-81

Context: Extreme snow load on roof can generate both economic & human damages:

- USA: excess of \$200 million in roof damages in 1993
- Poland: roof collapse lead to 62 dead in 2006

Credit: TwinCities PioneerPress

Credit: Ryan McFarland 2009. Collasped roof

INRA

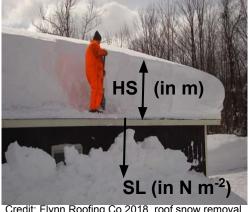
Two main results: Hazard of snow load is

- **decreasing** with time in the French Alps
- exceeding roof standards for half massifs at 1800 m

Our goal: Ensure Building Standards are resilient

- study past trends in hazard of snow load
- then compare hazard in 2019 with roof standards

Ground snow load (GSL)


Relation to other snow metrics

Meteorological metric

Precipitation (rainfall + snowfall) in mm, same as kg m^{-2}

Snowpack metrics

Credit: Flynn Roofing Co 2018. roof snow removal

Snow Depth (**HS**) measured in m

x snow density, that vary from 100 to 800 kg m⁻³

Snow water equivalent measured in kg m⁻²

x gravitational acceleration ($g = 9.8 \text{ m s}^{-2}$)

Snow Load (SL) measured in N m⁻², same as Pa

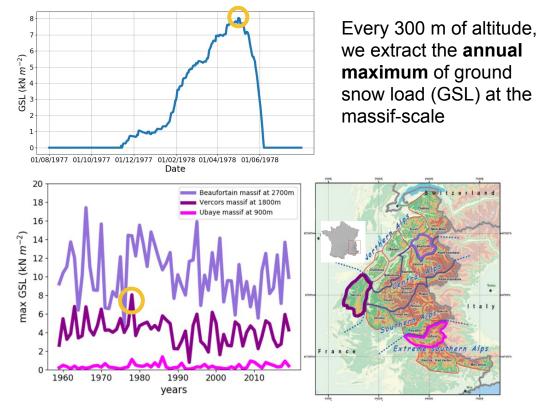
We focus on the pressure of accumulated snow load on the ground: the ground snow load (GSL)

Data

GSL (Ground snow load) reanalysis data from the Météo-France Safran-Crocus chain

Annual maximum of GSL in 1978

for the Vercors massif at 1800 m

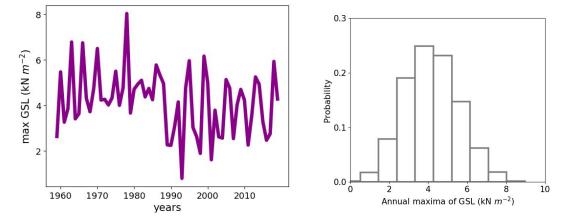

Annual maxima of GSL from 1959 to 2019

for the Ubaye massif at 900 m for the Vercors massif at 1800 m for the Beaufortain massif at 2700 m

First motivation:

INRAe

What are the **temporal trends in the hazard** associated to these annual maxima **of GSL** ?



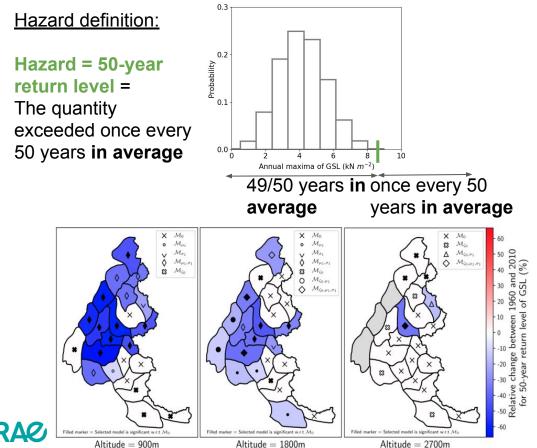
Statistical Methodology

Non-stationary modelling

Annual maxima of ground snow load (GSL)

Stationary model (Generalized extreme value distribution) Examples of **non-stationary model** (i.e. probabilities change with time)

1. the histogram could slide linearly to the left with time (= less intense annual maxima in average)


2. the histogram could spread with time (= increase variance of annual maxima)

For each time series of observations: we select the model (stationary or non-stationary) that minimized the AIC score, i.e. the model that both:

- explain well the observations
- have few parameters

Result 1. Temporal decrease of snow load hazard

Decrease in 50-year return level of ground snow load (GSL)

Stationary hazard

The probabilities stay the same with time Thus, return level stays the same with time

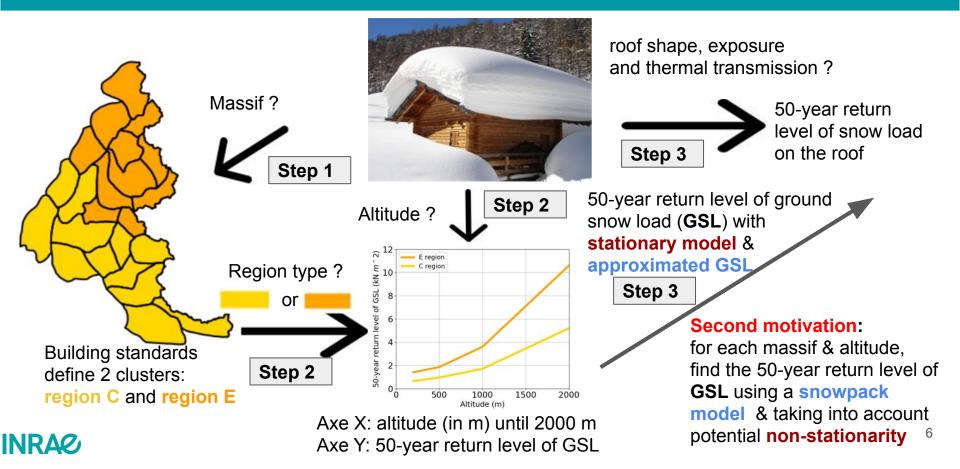
Non-stationary hazard.

The histogram (i.e. the probabilities) change with time

Thus, return level is changing with time

<u>Results</u>:

For snow load hazard, we find either:


- a **decrease** (non stationary model)
- no trends (stationary model)

The decrease in snow load hazard is:

- Mainly located in the Northwest
- Less important for higher altitudes

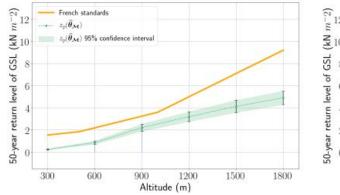
Building standards in the French Alps

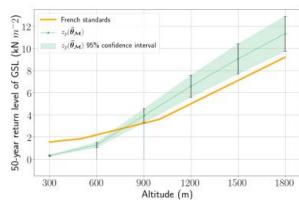
How to obtain the 50-year return level of snow load on a roof?

Comparison between our approach and French standards

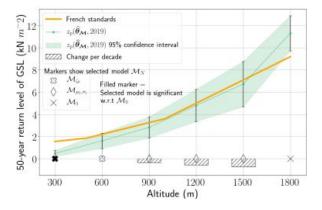
Two differences: Models used & the type of GSL data used

(with a snowpack model).


stationary model & actual GSL


Center

Example for the Beaufortain massif:


Left: Similar to French standards = stationary model & approximated GSL (with apply donth & apply donaity)

(with snow depth & snow density equal to 150 kg m⁻³).

Right: Results with our approach Selected model (stationary or non-stationary) & actual GSL.

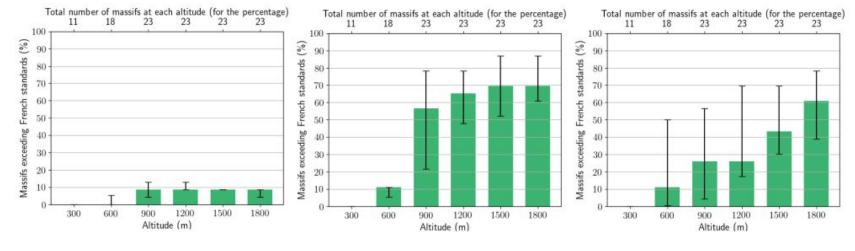
No exceedances

Exceedances between 900 m and 1800 m

Exceedances only at 1800 m 7

Result 2. Return levels of GSL exceed French Standards

Percentage of massifs that exceed standards


Summary of exceedances for all massifs:

Left: Similar to French standardsCenter:= stationary modelstation

& approximated GSL.

stationary model & actual GSL (with a snowpack model).

Right: Results with our approach Selected model (stationary or non-stationary) & actual GSL.

Almost no exceedances

Many exceedances (>50%) between 900 m and 1800 m Many exceedances (>50%) only at 1800 m

8

Currently under review for the journal NHESS https://doi.org/10.5194/nhess-2020-81

Accounting for Non-stationarity in Extreme Snow Loads: a Comparison with Building Standards in the French Alps

Erwan Le Roux¹, Guillaume Evin¹, Nicolas Eckert¹, Juliette Blanchet², and Samuel Morin³ ¹Univ. Grenoble Alpes, INRAE, UR ETNA ²Univ. Grenoble Alpes, Grenoble INP, CNRS, IRD, IGE ³Univ. Grenoble Alpes, Univ. Toulouse, Météo-France, CNRS, CNRM, CEN Grenoble

Main results: Hazard of ground snow load is

- **decreasing** with time in the French Alps
- exceeding roof standards for half massifs at 1800 m

INRA