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A state-of-the-art gridded reconstruction product for the annual sea surface temperature
covering the northern North Atlantic region over the past two millennia.

Summary

In this ongoing project we are using two existing methods for climate field reconstruction (CFR) of gridded sea surface temperature (SST): one Bayesian hierarchical model and one

proxy-surrogate reconstruction method. The ensemble-based reconstructions will be used to analyse past changes in marine to terrestrial teleconnections in the North Atlantic realm, 

and to improve the existing seasonal reconstructions of major climate indices such as the Atlantic multidecadal variability (AMV). 

Time slice for example reconstruction - SST anomaly (K)
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Fig. 1: Time slice at a given time for the reconstruction. Dots indicate the 

reconstruction target region. Squares denote proxy locations. Temperature in 

degrees Kelvin (K).

Input data:
• HadSST4 instrumental data: period 1850-present (Kennedy et al. 2019).

• Proxy records records with age-depth uncertainties sampled from marine sediment 

cores: foraminifera, alkenones, diatoms, dinocysts. 

• Proxy records from marine layered archives: corals and bivalves.

• In total 30 proxy records used. Temporal resolution varying from 1-200 years

• Proxy records selected from Ocean 2k of the PAGES2k 2.0.0 database (PAGES2k 

Consortium 2017). 

• Kennedy, J. J., Rayner, N. A., Atkinson, C. P., & Killick, R. E. ( 2019), Journal of Geophysical Research: Atmospheres, 124, 7719– 7763, doi: 10.1029/2018JD029867
• PAGES2k Consortium (2017), Scientific Data, 4, 170088, doi:10.1038/sdata.2017.88

Please write me an e-mail if you have information on
additional proxy records. Thank you.
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• An ensemble of age models is constructed for each core-based record using
BACON (Bayesian accumulation histories for deposits, Blaauw & Christen, 
2011) and used as input for the reconstruction.

• Layered proxy records exhibit dating uncertainties due to miscounting. An 
ensemble of age models is constructed for these records using BAM (banded
archive modelling, Comboul et al. 2014).

Methodology – Bayesian Algorithm for 
Reconstruction of Climate Anomalies in 
Space and Time (BARCAST)
A Bayesian Hierarchial Model with 3 levels (Tingley & Huybers 2010)

1) Process level – The temperatures are modelled as an AR(1) process in time: 

Tt − µ = α (Tt −1 − µ ) + εt 

The innovations (increments) εt are assumed to be IID normal draws εt ∼ N(0,Σ) with

exponentially decaying covariance structure:  Σij = σ2 exp(−φ|xi −xj|)

Where t denotes time and i, j denotes locations in space.

2) Data level - model the instrumental (WI,t) and proxy (WP,t) observations as noisy

realizations of the true climate:

Where H identfies each grid cell as empty or containing observations.

3) Prior level - weakly informative but proper prior distributions are used for the model

parameters. The information from the data overwhelms the priors.

The probability for the observations, conditional on the true temperature field vector and the

collection of all parameters denoted by Θ: 

P(W1 , ...Wκ |T1 , ....Tκ , Θ) = ∏#$%
& P(Wk |Tk , Θ),          Where time runs from 1 to '.

Bayes rule is applied to estimate the posteriors for the temperatures and the scalar

parameters given the observations.

Accounting for age-depth uncertainties and 
miscounted layers

• Blaauw, M. and J. A. Christen, (2011), Bayesian Analysis, 6, 457-474, doi: 10.1214/11-BA618 
• Comboul, M., Emile-Geay, J., Evans, M. N., Mirnateghi, N., Cobb, K. M., and Thompson, D. M., (2014), Clim. Past, 10, 825–841, doi:10.5194/cp-10-825-2014 
• Miettinen, A., D. V. Divine, K. Husum, N. Koç, and A. Jennings (2015), Paleoceanography, 30, 1657?1674, doi: 10.1002/2015PA002849 
• Tingley & Huybers (2010), Journal of Climate, 23 (10), doi: DOI: 10.1175/2009JCLI3015.1 

Data level:
Model the instrumental and proxy observations as noisy realizations of the true climate.
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Prior level:
Weakly informative but proper prior distributions are used for the model parameters. The
information from the data overwhelms the priors.

Tt ! m1 5 a(Tt!1 ! m1) 1 !t, (1)

where m is the mean of the process, a is the AR(1) co-
efficient, 1 is a vector of ones, and the subscript t indexes
the year. A more general model could be formulated by
replacing the scalar a with a matrix, which would allow
the elements of Tt to have different autoregressive pa-
rameters, and to display cross dependencies. Here and
below we make the simplest assumptions that we con-
sider reasonable, and we discuss possible extensions in
section 4. The innovations !t are assumed to be indepen-
dent and identically distributed (iid) normal draws, !t ;
N(0, S), with spatial covariance structure given by

Sij 5 s2 exp(!fjxi !xjj), (2)

where jxi 2 xjj is the distance between the ith and jth
elements of the field vector T. Note that this formulation
of the spatial covariance intentionally excludes a nugget
effect (e.g., Banerjee et al. 2004); the reason for this is
addressed below. The implications and limitations of
assuming an exponentially decaying spatial covariance
structure will be addressed in detail below, but for now
we note that the Climate Research Unit (CRU) annual
mean instrumental temperature data (Brohan et al. 2006)

does seem to exhibit plausible exponential decay of cor-
relation with separation, at least for separations smaller
than about 4000 km (Fig. 2). The saturation of correla-
tion at positive values at length scales longer than 4000 km
is likely the result of trends in the CRU dataset—indeed,
if data are detrended first the correlation decays to values
indistinguishable from zero.

2) DATA LEVEL

It is useful to decompose the vector T, at each year,
into three subvectors:

T 5

TI
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1
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where TI and TP are the true temperatures at locations
for which there are instrumental or proxy observations,
respectively. If there is both a proxy and instrumental
observation at the same location, then the true field
value for that location appears in both TI and TP. The
values for TR are the true temperatures at the target
locations where there are no observations. For the ex-
amples presented below, we select these target locations
to be the remaining nodes of a uniform grid.

TABLE 1. Forms of the priors and conditional posteriors, along with brief descriptions, for the unknowns inferred by BARCAST.
MV stands for multivariate, and nonstandard indicates that the conditional posterior does not follow a well-known distribution.

Prior form Conditional posterior Description

T0 MV normal MV normal Field values for the time step prior to the first observations.
Tk51. . .k — MV normal Field values at each time step for which there are observations.
a Uniform Truncated normal AR(1) coefficient in the field evolution equation.
m Normal Normal Mean of T.
s2 Inverse-gamma Inverse-gamma Partial sill of the spatial covariance matrix of the innovations

that drive the AR(1) process.
f Log-normal Nonstandard Inverse range of this spatial covariance matrix.
tI

2 Inverse-gamma Inverse-gamma Error variance of instrumental observations.
tP

2 Inverse-gamma Inverse-gamma Error variance of proxy observations.
b1 Normal Normal Scaling factor in the proxy observation equation.
b0 Normal Normal Additive constant in the proxy observation equation.

TABLE 2. Descriptions of other variables appearing frequently in the model equations.

Description

Wt Observations of a subset of Tt, subdivided into WI,t and WP,t, where the additional
subscript I or P indicates instrumental and proxy observations, respectively.

k Number of years for which there are (any) observations; time runs from 0,
the year prior to the first observations, to k.

NI,t and NP,t The number of instrumental and proxy observations at year t;
without the time index, these refer to the total number of locations for which
there are either instrumental or proxy observations.

MI [ !k

k51 NI,k Total number of instrumental observations; MP is the equivalent measure for the proxy data.
NA Total number of locations at which the field is estimated.
Q A vector consisting of the eight scalars that define the model.
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Table from Tingley & Huybers 2010.
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Figure 2: left: example time series plot of SST reconstruction from Miettinen et al. 2015. Right: Age-depth 

models generated using information of C14 dating and absolute time markers.

Table 1 from Tingley & Huybers 2010 lists information about the model parameters



Pseudoproxy experiments
for BARCAST

• The BARCAST reconstruction skill for North Atlantic SST will be tested using

known target data from one climate model simulation of the Last Millennium 

Ensemble of the CCSM4 model (Otto-Bliesner et al. 2016).

• The simulated SST is resampled to resemble real-world availability of SST 

observations, and perturbed with noise to simulate the observed noise of

instrumental data and proxies. 

Methodological challenges
• BARCAST models the target variable as an AR(1) process in time, and cannot

assess the long-range memory that real SST data exhibit (Franzke et al. 2019).

• BARCAST parameters are originally designed for data over land.

• BARCAST is computationally demanding and probabilistic in nature. 

Generating a full ensemble of reconstructions is CPU- and time-consuming.

Results to come!

• Franzke, C. L. E., Barbosa, S., Blender, R., Fredriksen, H.-B., Laepple, T., Lambert, F., et al., ( 2020). Reviews of Geophysics, 58, e2019RG000657, doi: 10.1029.2019/RG000657.
• Otto-Bliesner et al. (2016) , Bull. Amer. Meteor. Soc. 97, 735-754, doi: 10.1175/BAMS-D-14-00233.1 

Figure 3: Example time series used for pseudoproxy experiments. Target 

variable perturbed with white noise to obtain a proxy signal-to-noise ratio of 0.7 
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Proxy surrogate reconstruction method
(the analogue method)
The second reconstruction method is a learning technique with proxy records as predictors, and 

climate model time slices as the learning set (the pool of possible analogues). For each time point

to reconstruct, the distance between the vectors of the proxy network and each model time slice is 

calculated. The reconstruction at time t is the mean of the N closest analogues.
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Figure 4: Analogue example. Simulation slice

i=1 matches the proxy network at time t1 best, 

with minimum distance to the SST proxies at 

locs 1-3. For t2  the best match is slice i=3.

Euclidian distance between the proxy network TP at time t1 and a possible analogue TM at time ti:

D(TP, TM)= ∑#$%& (TjP – Tj
M) , where j denotes proxy locations.
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Novelties of the PALEOBRIDGE 
project
• This will be the first ensemble-based climate field reconstruction

of SST using marine proxies for the larger northern North 

Atlantic region.

• BARCAST reconstructs target values even at locations without

observations, and takes age-model uncertainties properly into

consideration.

2019 2020 2021 2022 

Method implementation,         Pseudoproxy experiments,  generating reconstructions Data analysis,
configuration, (both methods), initial data analysis impact studies 
data preparation

Project timeline

• Wang, J., Yang, B., Ljungqvist, F. et al. (2017). Nature Geosci, 10, 512-517, doi:10.1038/ngeo2962
* https://dataverse.no/dataverse/uit

Why do we need SST reconstructions for the
northern North Atlantic? 
• To gain knowledge and better understanding of the natural climate variability on time 

scales extending beyond the instrumental period. 

• To improve the existing reconstructions of the AMV. The variability of the North Atlantic 

SST is currently reconstructed from terrestrial proxy data (Fig 1a and 2a of Wang et al. 

2017). 

Expected output and how to access it
The reconstructed data sets and the associated numerical code will be 

uploaded to NOAA NCEI and the UiT Open Research Data Portal 

upon publication*. In the meantime, contact me by e-mail for updates

and requests. 

The project group thanks the Research Council of

Norway for funding through grant nr. 287847.

https://dataverse.no/dataverse/uit

