

Variability of the Subantarctic Mode Water volume in the South Indian Ocean during 2004-2018

Introduction

Subantarctic Mode water (SAMW) : water mass with vertically homogenous physical properties (temperature and salinity) that covers a large horizontal area in the southern hemisphere.

In the South Indian Ocean (SIO), the SAMW displays a high sensitivity to climate change. This study investigates the layer dependence of the SAMW volume variation in the SIO and its associated atmospheric forcing based on **Argo** observations.

Data and methods

Data source:

• Temperature and salinity profiles from the **Argo** data from **JAMSTEC** during 2004-2018. Region is restricted to 20°E-140°E and 20°S-60°S.

Heat fluxes and wind from ERA-Interim.

SAMW definition:

- 100 m -1000 m
- $Pv \le 0.5 \times 10^{-10} \text{ m}^{-1} \text{ s}^{-1}$ $PV = \frac{f}{\rho} \frac{d\rho}{dz}$
- 26.6 kg m⁻³ $\leq \sigma \leq$ 26.9 kg m⁻³

SAMW density classes:

	Light SAMW	Medium SAMW	Dense SAMW
Density range	26.6<σ≤26.7	26.7<σ≤26.8	26.8<σ≤26.9

Yu Hong, Yan Du, Tangdong Qu, Ying Zhang and Wenju Cai State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China Email: hongyu@scsio.ac.cn

The SAMW volume change

The SAMW exists mainly in the Indian and Pacific Oceans, with only a very small amount observed in the Atlantic Ocean. In each ocean basin, the denser SAMW is confined to the east, i.e., the SAMW density increases from west to east starting at 60°E in the SIO.

- During 2004-2018, the total SAMW volume $0.032 \pm 0.021 \times 10^{15}$ m³ year⁻¹. The percentage of this volume decreases by $\sim 10\%$ from 2004 to 2018.
- The dense SAMW experiences a decreasing trend of 0.053±0.027 $\times 10^{15}$ m³ year⁻¹ from 2004 to 2018, while the **medium and light SAMW increase** by 0.008 $\pm 0.018 \times 10^{15}$ m³ year⁻¹ and $0.012 \pm 0.014 \times 10^{15} \text{ m}^3 \text{ year}^{-1}$, respectively.

The SAMW spatial distribution

Blue (the first period): 2004-2007

From the first to the second period:

- The light SAMW expands, and its thickness increases by more than 50 m.
- The medium SAMW show a dipole pattern both for its spatial coverage and thickness, which decrease in the lower latitudes and increase in the higher latitudes.
- The coverage of the **dense SAMW** does **not change** much at higher latitudes; however, it **decreases** at lower latitudes. The **thickness decreases** by more than 60 m.

decreases by

The SAMW volume change mechanism

volume increase at 26.6-26.8 kg m⁻³.

Conclusion and discussion

- SIO over the period 2004-2018.

• The weakening of the Mascarene High and westerly winds in the SIO reduces the evaporation-precipitation, surface heat flux (the buoyancy loss) and Ekman pumping and shoals the **mixed layer** southwest of Australia, which leads to a volume decrease at 26.8-26.9 kg m⁻³ in approximately 3 years. West of 90°E, the parameters exhibit the opposite change, leading to a

Surface buoyancy flux, Ekman pumping and 10 m winds (JAS) MVEOF 1

The distinct weakening of the Mascarene High (MH) during 2000-2018 leads to changes in the SAMW volume with a lag time of ~3 years.

• Argo data reveal a Subantarctic Mode Water volume loss in the

• Most of the volume loss occurs in the density range of 26.8-26.9 kg m⁻³, while a volume increase occurs at 26.6-26.8 kg m⁻³.

Changes in the SAMW volume are controlled by surface forcing, which is closely related to the Mascarene High variation.

The increasing ocean heat content in the SIO is dominated by an increasing volume of water that is lighter than the SAMW (less than 26.8 kg m⁻³), and thus, the decreasing volume of the dense SAMW partially offsets the increase in the total SIO OHC.