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Tipping elements in the climate system
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Need a comprehensive framework to quantify the 
Climate Response!

to the CO2 fertilization effect or decreasing uptake due to a de-
crease in rainfall). For some of the tipping elements, crossing the
tipping point could trigger an abrupt, nonlinear response (e.g.,
conversion of large areas of the Amazon rainforest to a savanna or
seasonally dry forest), while for others, crossing the tipping point
would lead to a more gradual but self-perpetuating response
(large-scale loss of permafrost). There could also be considerable
lags after the crossing of a threshold, particularly for those tipping
elements that involve the melting of large masses of ice. However,
in some cases, ice loss can be very rapid when occurring as
massive iceberg outbreaks (e.g., Heinrich Events).

For some feedback processes, the magnitude—and even the
direction—depend on the rate of climate change. If the rate of
climate change is small, the shift in biomes can track the change in
temperature/moisture, and the biomes may shift gradually, po-
tentially taking up carbon from the atmosphere as the climate warms
and atmospheric CO2 concentration increases. However, if the rate of
climate change is too large or too fast, a tipping point can be crossed,
and a rapid biome shift may occur via extensive disturbances (e.g.,
wildfires, insect attacks, droughts) that can abruptly remove an
existing biome. In some terrestrial cases, such as widespread wild-
fires, there could be a pulse of carbon to the atmosphere, which if
large enough, could influence the trajectory of the Earth System (29).

Varying response rates to a changing climate could lead to
complex biosphere dynamics with implications for feedback
processes. For example, delays in permafrost thawing would most
likely delay the projected northward migration of boreal forests
(30), while warming of the southern areas of these forests could
result in their conversion to steppe grasslands of significantly
lower carbon storage capacity. The overall result would be a
positive feedback to the climate system.

The so-called “greening” of the planet, caused by enhanced
plant growth due to increasing atmospheric CO2 concentration
(31), has increased the land carbon sink in recent decades (32).
However, increasing atmospheric CO2 raises temperature, and
hotter leaves photosynthesize less well. Other feedbacks are also
involved—for instance, warming the soil increases microbial res-
piration, releasing CO2 back into the atmosphere.

Our analysis focuses on the strength of the feedback between
now and 2100. However, several of the feedbacks that show
negligible or very small magnitude by 2100 could nevertheless be
triggered well before then, and they could eventually generate
significant feedback strength over longer timeframes—centuries
and even millennia—and thus, influence the long-term trajectory
of the Earth System. These feedback processes include perma-
frost thawing, decomposition of ocean methane hydrates, in-
creased marine bacterial respiration, and loss of polar ice sheets
accompanied by a rise in sea levels and potential amplification of
temperature rise through changes in ocean circulation (33).

Tipping Cascades. Fig. 3 shows a global map of some potential
tipping cascades. The tipping elements fall into three clusters
based on their estimated threshold temperature (12, 17, 39).
Cascades could be formed when a rise in global temperature
reaches the level of the lower-temperature cluster, activating
tipping elements, such as loss of the Greenland Ice Sheet or Arctic
sea ice. These tipping elements, along with some of the non-
tipping element feedbacks (e.g., gradual weakening of land and
ocean physiological carbon sinks), could push the global average
temperature even higher, inducing tipping in mid- and higher-
temperature clusters. For example, tipping (loss) of the Green-
land Ice Sheet could trigger a critical transition in the Atlantic
Meridional Ocean Circulation (AMOC), which could together, by
causing sea-level rise and Southern Ocean heat accumulation,
accelerate ice loss from the East Antarctic Ice Sheet (32, 40) on
timescales of centuries (41).

Observations of past behavior support an important contri-
bution of changes in ocean circulation to such feedback cascades.
During previous glaciations, the climate system flickered between
two states that seem to reflect changes in convective activity in the
Nordic seas and changes in the activity of the AMOC. These
variations caused typical temperature response patterns called the
“bipolar seesaw” (42–44). During extremely cold conditions in the
north, heat accumulated in the Southern Ocean, and Antarctica
warmed. Eventually, the heat made its way north and generated
subsurface warming that may have been instrumental in destabi-
lizing the edges of the Northern Hemisphere ice sheets (45).

If Greenland and the West Antarctic Ice Sheet melt in the fu-
ture, the freshening and cooling of nearby surface waters will have
significant effects on the ocean circulation. While the probability
of significant circulation changes is difficult to quantify, climate
model simulations suggest that freshwater inputs compatible with
current rates of Greenland melting are sufficient to have mea-
surable effects on ocean temperature and circulation (46, 47).
Sustained warming of the northern high latitudes as a result of this
process could accelerate feedbacks or activate tipping elements
in that region, such as permafrost degradation, loss of Arctic sea
ice, and boreal forest dieback.

While this may seem to be an extreme scenario, it illustrates
that a warming into the range of even the lower-temperature
cluster (i.e., the Paris targets) could lead to tipping in the mid- and
higher-temperature clusters via cascade effects. Based on this
analysis of tipping cascades and taking a risk-averse approach, we
suggest that a potential planetary threshold could occur at a
temperature rise as low as ∼2.0 °C above preindustrial (Fig. 1).

Alternative Stabilized Earth Pathway
If the world’s societies want to avoid crossing a potential threshold
that locks the Earth System into the Hothouse Earth pathway, then
it is critical that they make deliberate decisions to avoid this risk

Fig. 3. Global map of potential tipping cascades. The individual
tipping elements are color- coded according to estimated thresholds
in global average surface temperature (tipping points) (12, 34).
Arrows show the potential interactions among the tipping elements
based on expert elicitation that could generate cascades. Note that,
although the risk for tipping (loss of) the East Antarctic Ice Sheet is
proposed at>5 °C, somemarine-based sectors in East Antarctica may
be vulnerable at lower temperatures (35–38).
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! Equilibrium change in global mean surface temperature after a 
doubling of the atmospheric CO2 concentration.

What is climate sensitivity?

3

Doubling of 
pCO2

Radiative 
perturbation 

ΔR0

Climate System 
(no feedbacks) ΔT = S0 ΔR0

! No feedbacks:  

   Planck response S0= 0.3 K/(W/m2)
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! Equilibrium change in global mean surface temperature after a 
doubling of the atmospheric CO2 concentration.

! With feedbacks: 

What is climate sensitivity?

3

Doubling of 
pCO2

Radiative 
perturbation 

ΔR0

Climate System 
(no feedbacks) ΔT = S0 ΔR0

ΔRfb = c1 ΔT 

Climate System 
with feedbacks

ΔT = S0 (ΔR0+c1ΔT) 
= S ΔR0

S = ΔT/ΔR0

! No feedbacks:  

   Planck response S0= 0.3 K/(W/m2)
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! Timescales and equilibrium 
̣ Slow and fast feedback processes. 
̣ Timescale separation. 

! Dependence on the background climate 
̣ (Fast) feedback processes are not “constant”. 

! Tipping points in the climate system 
̣ New ‘flavours’ of climate sensitivity. 
̣ Extremes in climate sensitivity vs probability of tipping. 

Quantifying climate sensitivity: problems
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Time scales & equilibrium
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[15]. Section 4 finishes with a discussion of conclusions and some challenges for the future.

2 Sensitivities and the climate attractor
sec:sens

In order to understand variability, abrupt transitions and response to perturbations we con-
sider the climate system as a high-dimensional multiscale complex dynamical system whose
evolving trajectories form a climate attractor. The ECS can be defined on this attractor and
regimes or states may be identified where a linear approximation of the response may be
reasonable. Tipping points visible in the GMST will show up as large but occasional shifts
between di↵erent “climate regimes” of the attractor, or indeed di↵erent attractors. We vi-
sualise the attractor by projection onto climate variables relevant for determining ECS, i.e.
the GMST T and the radiative forcing R [32]. Consider the energy balance equation

cT
dT

dt
= Rforcing +Rslow +Rfast �ROLW , (1) e:energybalance

where the left hand side represents the rate of change of the global mean surface temperature
T (with a heat capacity cT ) and on the right hand side Rforcing is the (external) radiative
forcing (including changes in CO2), Rslow (Rfast) is the radiative perturbation due to all
slow (fast) feedback processes within the climate system and ROLW is the outgoing longwave
radiation, respectively. Following the formalism of [26], the specific climate sensitivity is

Sforcing,slow =
�T

�Rforcing +�Rslow
⇡ dT

d(Rforcing +Rslow)
, (2) eq:Sspecific

which equals the Charney sensitivity S if �Rslow is the sum of all slow feedback processes
contributing to the ECS (and under the assumption of time scale separation). In practise,
only some of the slow processes are accessible from palaeoclimate records (e.g. only land
ice), in which case the specific climate sensitivity is only an approximation of the Charney
sensitivity [26] (e.g. S[CO2,LI] is the specific climate sensitivity considering only land ice
changes as slow feedback). The use of the specific climate sensitivity is that it can give a
linear prediction

T
0 = T + Sforcing,slow (�Rforcing +�Rslow) . (3) eq:linpred

For a specific energy balance model including regime shifts we can explicitly calculate ECS
for the di↵erent regimes, see section 3. We note that several other authors have highlighted
the need to improved notes of ECS: these include [7] who propose to use a measure-based
approach to understand climate sensitivity and [11] who consider conditional climate sensi-
tivities constrained by temperature, coupled with resilience measures for switching to other
regimes.

2.1 Observation of the climate attractor

We consider the climate system as a high dimensional dynamical system that evolves along
trajectories x(t) according to a smooth flow

x(t) = 't(x(0)) (4) e:climatesystem

4

Earth system sensitivity 

‘Correct’ for slow feedbacks, e.g.   

‘Equilibrium’ sensitivity S: 

This finally leads to the expressions for the specific climate sensitivities

S[CO2] =
�T

�R[CO2]

=
��T

�R[OLW ] +�R[SI] +�R[surf ] +�R[LI]

(21)

S[CO2,LI] =
�T

�R[CO2] +�R[LI]

=
��T

�R[OLW ] +�R[SI] +�R[surf ]

(22)

S[CO2,LI,SI] =
�T

�R[CO2] +�R[LI] +�R[SI]

=
��T

�R[OLW ] +�R[surf ]

. (23)

The last expression should approximate the sensitivity without feedbacks (i.e. only Planck

feedback), S0 = (�4"�BT
3
)
�1 ' 0.3 K (W m

�2
)
�1
. In the model there is, however, one

more radiation term due to the atmosphere-ocean heat exchange (�Rsurf ), which acts on

fast to intermediate time scales. Therefore, S[CO2,LI,SI] still slightly deviates from the Planck

sensitivity.

S
p

= S[CO2] =
�T

�R[CO2]

(24)

S[CO2,LI] =
�T

�R[CO2] +�R[LI]

(25)
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! Uncertainty from observations, model, unaccounted processes  

̣ Big uncertainties in quantification for radiative forcing. 

̣ Palaeoclimate: Big uncertainty in climate reconstruction. 

! Climate dynamics: 

̣ feedback processes change with background climate! 

̣ Very high climate sensitivity: 

• nonlinearities in the climate system - evidence for 
tipping?

Distributions of climate sensitivity - origin of 
uncertainty?
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Palaeoclimate sensitivity S: trajectory on a 
‘climate attractor’
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clusions and some challenges for the future. Appendix A extends results of
[36] and examines extremes of sensitivity associated with tipping points in a
more realistic physics-based multi-box model of the glacial cycles by Gildor
and Tziperman [17].

2 Sensitivities and the climate attractor

In order to understand variability, abrupt transitions and response to per-
turbations we consider the climate system as a high-dimensional multiscale
complex dynamical system whose evolving trajectories form a climate attrac-

tor. The ECS can be defined on this attractor and regimes or states may be
identified where a linear approximation of the response may be reasonable.
Tipping points visible in the GMST will show up as large but occasional shifts
between di↵erent ‘climate regimes’ of the attractor, or indeed di↵erent attrac-
tors. We visualise the attractor by projection onto climate variables relevant
for determining ECS, i.e. the GMST T and the radiative forcing R per unit
area [36]. Consider the energy balance model

cT
dT

dt
= Rforcing +Rslow +Rfast �ROLW, (1)

where the left hand side represents the rate of change of the global mean sur-
face temperature T (with specific heat capacity cT ) and on the right hand side
Rforcing is the (external) radiative forcing (including changes in CO2), Rslow

(Rfast) is the radiative perturbation due to all slow (fast) feedback processes
within the climate system and ROLW is the outgoing longwave radiation, re-
spectively. Following the formalism of [30], the specific climate sensitivity is

Sforcing,slow =
�T

�Rforcing +�Rslow

⇡ dT

d(Rforcing +Rslow)
, (2)

which equals the Charney sensitivity S if �Rslow is the sum of all slow feed-
back processes contributing to the ECS (and under the assumption of time
scale separation). In practise, only some of the slow processes are accessible
from palaeoclimate records (e.g. only land ice), in which case the specific cli-
mate sensitivity is only an approximation of the Charney sensitivity [30] (e.g.
S[CO2,LI] is the specific climate sensitivity considering only land ice changes as
slow feedback). This ECS gives a linear prediction for change in temperature:

T
0 = T + Sforcing,slow (�Rforcing +�Rslow) . (3)

For a specific energy balance model including regime shifts we can explicitly
calculate ECS for the di↵erent regimes, see section 3. We note that several
other authors have highlighted the need to improved notions of ECS: this
includes [8] who propose to use a measure-based approach to understand cli-
mate sensitivity and [12] who consider conditional climate sensitivities con-
strained by temperature, coupled with resilience measures for switching to
other regimes.
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CO2 and water feedbacks. As in [11], we assume that the albedo varies with temperature
due to changes in land-ice feedback processes: they assume there are threshold temperatures
T1 < T2 associated with changes of albedo ↵(T ) and define a function

⌃(T ) =
(T � T1)

T2 � T1
H(T � T1)H(T2 � T )) +H(T � T2) (16)

that switches from 0 for T < T1 to 1 for T > T2: H(T ) is approximately a Heaviside unit
step function and we use a smooth approximation H(T ) = (1 + tanh(T/✏H))/2 as in [11].
We then set

↵(T ) = ↵1(1� ⌃(T )) + ↵2⌃(T )

to change smoothly from ↵1 of an ice surface (T < T1) to ↵2 of an ocean surface (T > T2)
as in [11]).

Finally, we include a stochastic term to (15) that represents unresolved subgrid processes
with amplitude ⌘T :

cT dT = F (T,C)dt+ ⌘TdWT . (17) eq:EBM

The parameters used are listed in Table 1 except where specified as di↵erent. Note that the
deterministic equilibria of (15) are at F (T,C) = 0, i.e at

C = �(T ) := C0 exp


✏(T )�T 4 �Q0(1� ↵(T ))�G0

G1

�
. (18) eq:EBMequil

This means there is a unique equilibrium for each T , but not necessarily for each C: in
particular as discussed in [11, 35] there are three branches of equilibria for a range of C. We
note that from (18) we have at equilibrium that

�R[CO2] = ✏(T )�T 4 �Q0(1� ↵(T ))�G0 (19) eq:EBMDRTeqm

and for the parameters used we have bistability in the region

�20.77 Wm
�2

< �R < 21.93 Wm
�2
, 102 ppm < C < 777 ppm, (20) eq:bistabrange

see the red line in Fig. 3. We can define the instantaneous sensitivity2 as

S =


d

dT
�R[CO2]

��1

=
⇥
(✏0T + 4✏)�T 3 +Q0↵

0⇤�1
, (21) eq:iSens

which corresponds to the slope of the tangent of the equilibrium (non-stochastic) model (see
Fig. 1, point B). Note that for T � T0 we have ✏(T ) ⇡ 1�m and ↵

0 = 0 and so

S ⇡ (4�(1�m)T 3)�1 (22) eq:SfromW

while for T ⌧ T0 we have ✏(T ) ⇡ 1 and ↵
0 = 0 and

S ⇡ (4�T 3)�1 (23) eq:SfromC

2This is referred to as local slope sensitivity in [19].
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Let us assume the current state at time t = 0 of the climate system is given by a measure
�0 on phase space X (denoted by point A in Fig. 1). Note that this will always be a measure
rather than a point because of lack of knowledge of sub-grid parametrized processes (e.g.
[30]) but it will project onto the current values (T0, R0) = (T (x), R(x)) for all x in the
support of �0. As time progresses, this state will spread to give a measure at time t that is

�t(A) = �('�t(A))

for any A ⇢ X (Fig. 1 shows a trajectory in black and others from the ensemble starting at
A in grey). The incremental sensitivity for a time interval �t is then

S
�t
0 (x) =

T ('�t(x))� T0

R('�t(x))�R0
(8) eq:Sinc

with distribution
P(S�t

0 2 A) = �({x : S
�t
0 (x) 2 A}).

Over long time, if there is decay of correlations and mixing of trajectories on the climate
attractor [31, 30] then in a weak sense �t ! M , and so we expect the distribution of long-
term incremental sensitivities for �t ! 1 become time-independent for typical trajectories
within the attractor:

P(S1
0 2 A) = M({x : S

1
0 (x) 2 A}). (9) eq:S0inf

where

S
1
0 (x) =

T (x)� T0

R(x)�R0
.

Note that (7) means that the distribution of long-term sensitivities starting at (R0, T0) can
be written in terms of the geometry of the projected measure µ

P(S1
0 2 A) = µ({(T1, R1) : S

1
0,1 2 A}) (10) e:longtermsens

where we define the two-point sensitivity as

S
1
0,1 =

T1 � T0

R1 �R0
. (11) eq:S01

The distribution of long-term incremental sensitivity (10) for a generic choice of the initial
climate state suggests a time-independent notion of climate sensitivity that can be found by
picking pairs of points (R0,1, T0,1) independently distributed according to µ and evaluating
(2). This was introduced in [32] but we propose a simpler notation here.

This means that for any A ⇢ R we can use µ to assign a probability to the sensitivity
being in A:

P(S1
0,1 2 A) := µ⇥ µ

��
(T0, R0), (T1, R1) : S

1
0,1 2 A

 �
. (12) eq:Sdist

with S
1
0,1 defined as in (11). Note that in some sense this will give a maximal set of pos-

sibilities for the sensitivities in that it compares the observables T and R over all possible
time points and possible trajectories of the system. This is comparable to the conditional
climate sensitivity of [11] except rather than dividing into regimes, they restrict to deviations
of temperature at most �T from T0. In the case that the sensitivity is fixed at S0, note that
S
1
0,1 is a Dirac �-distribution centred at S0.
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CO2 and water feedbacks. As in [11], we assume that the albedo varies with temperature
due to changes in land-ice feedback processes: they assume there are threshold temperatures
T1 < T2 associated with changes of albedo ↵(T ) and define a function

⌃(T ) =
(T � T1)

T2 � T1
H(T � T1)H(T2 � T )) +H(T � T2) (16)

that switches from 0 for T < T1 to 1 for T > T2: H(T ) is approximately a Heaviside unit
step function and we use a smooth approximation H(T ) = (1 + tanh(T/✏H))/2 as in [11].
We then set

↵(T ) = ↵1(1� ⌃(T )) + ↵2⌃(T )

to change smoothly from ↵1 of an ice surface (T < T1) to ↵2 of an ocean surface (T > T2)
as in [11]).

Finally, we include a stochastic term to (15) that represents unresolved subgrid processes
with amplitude ⌘T :

cT dT = F (T,C)dt+ ⌘TdWT . (17) eq:EBM

The parameters used are listed in Table 1 except where specified as di↵erent. Note that the
deterministic equilibria of (15) are at F (T,C) = 0, i.e at

C = �(T ) := C0 exp


✏(T )�T 4 �Q0(1� ↵(T ))�G0

G1

�
. (18) eq:EBMequil

This means there is a unique equilibrium for each T , but not necessarily for each C: in
particular as discussed in [11, 35] there are three branches of equilibria for a range of C. We
note that from (18) we have at equilibrium that

�R[CO2] = ✏(T )�T 4 �Q0(1� ↵(T ))�G0 (19) eq:EBMDRTeqm

and for the parameters used we have bistability in the region

�20.77 Wm
�2

< �R < 21.93 Wm
�2
, 102 ppm < C < 777 ppm, (20) eq:bistabrange

see the red line in Fig. 3. We can define the instantaneous sensitivity2 as

S =


d

dT
�R[CO2]

��1

=
⇥
(✏0T + 4✏)�T 3 +Q0↵

0⇤�1
, (21) eq:iSens

which corresponds to the slope of the tangent of the equilibrium (non-stochastic) model (see
Fig. 1, point B). Note that for T � T0 we have ✏(T ) ⇡ 1�m and ↵

0 = 0 and so

S ⇡ (4�(1�m)T 3)�1 (22) eq:SfromW

while for T ⌧ T0 we have ✏(T ) ⇡ 1 and ↵
0 = 0 and

S ⇡ (4�T 3)�1 (23) eq:SfromC

2This is referred to as local slope sensitivity in [19].
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Let us assume the current state at time t = 0 of the climate system is given by a measure
�0 on phase space X (denoted by point A in Fig. 1). Note that this will always be a measure
rather than a point because of lack of knowledge of sub-grid parametrized processes (e.g.
[30]) but it will project onto the current values (T0, R0) = (T (x), R(x)) for all x in the
support of �0. As time progresses, this state will spread to give a measure at time t that is

�t(A) = �('�t(A))

for any A ⇢ X (Fig. 1 shows a trajectory in black and others from the ensemble starting at
A in grey). The incremental sensitivity for a time interval �t is then

S
�t
0 (x) =

T ('�t(x))� T0

R('�t(x))�R0
(8) eq:Sinc

with distribution
P(S�t

0 2 A) = �({x : S
�t
0 (x) 2 A}).

Over long time, if there is decay of correlations and mixing of trajectories on the climate
attractor [31, 30] then in a weak sense �t ! M , and so we expect the distribution of long-
term incremental sensitivities for �t ! 1 become time-independent for typical trajectories
within the attractor:

P(S1
0 2 A) = M({x : S

1
0 (x) 2 A}). (9) eq:S0inf

where

S
1
0 (x) =

T (x)� T0

R(x)�R0
.

Note that (7) means that the distribution of long-term sensitivities starting at (R0, T0) can
be written in terms of the geometry of the projected measure µ

P(S1
0 2 A) = µ({(T1, R1) : S

1
0,1 2 A}) (10) e:longtermsens

where we define the two-point sensitivity as

S
1
0,1 =

T1 � T0

R1 �R0
. (11) eq:S01

The distribution of long-term incremental sensitivity (10) for a generic choice of the initial
climate state suggests a time-independent notion of climate sensitivity that can be found by
picking pairs of points (R0,1, T0,1) independently distributed according to µ and evaluating
(2). This was introduced in [32] but we propose a simpler notation here.

This means that for any A ⇢ R we can use µ to assign a probability to the sensitivity
being in A:

P(S1
0,1 2 A) := µ⇥ µ

��
(T0, R0), (T1, R1) : S

1
0,1 2 A

 �
. (12) eq:Sdist

with S
1
0,1 defined as in (11). Note that in some sense this will give a maximal set of pos-

sibilities for the sensitivities in that it compares the observables T and R over all possible
time points and possible trajectories of the system. This is comparable to the conditional
climate sensitivity of [11] except rather than dividing into regimes, they restrict to deviations
of temperature at most �T from T0. In the case that the sensitivity is fixed at S0, note that
S
1
0,1 is a Dirac �-distribution centred at S0.
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Energy Balance model
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Energy Balance model with noise
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! Different S on each branch: state-
dependence 

! Near saddle-nodes: runaway climate

Instantaneous sensitivity
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Fig. 2 Behaviour of the equilibrium energy balance model (15) with parameters as in
Table 1. (a) temperature-dependence of albedo ↵(T ) and (b) emissivity ✏(T ); (c) CO2 and
(d) radiative forcing levels necessary to give temperature equilibria, corresponding to (18)
and (19), respectively. Note the region of multistability, and temperature-dependence of the
sensitivity corresponding to slopes in the bottom right figure.

The parameters listed in Table 1 are used, except where specified. Note that
the deterministic equilibria of (15) are at F (T,C) = 0, which gives

C = � (T ) := C0 exp


✏(T )�T 4 �Q0(1� ↵(T ))

A

�
. (18)

From (18), this means we have equilibria at

�R[CO2]
= A ln(� (T )/C0) = ✏(T )�T 4 �Q0(1� ↵(T )) (19)

Figure 2 illustrates temperature dependence of albedo and emissivity as
well as the resulting equilibrium forcing �R = A ln(� (T )/C0) needed to give
this temperature. Note there is a unique equilibrium for each T , but not neces-
sarily for each C: as discussed in [12, 39] there are three branches of equilibria
for a range of C: for the parameters used there is bistability in the region

�1.744 Wm
�2

< �R < 3.004 Wm
�2

, 202 ppm < C < 490 ppm, (20)

denoted using the red lines in Figs. 3 and 5. We can define the instantaneous
sensitivity1 as S = 1/�, where

� =
d

dT
�R[CO2]

= [✏0(T )T + 4✏]�T 3 +Q0↵
0(T ) (21)

is the total feedback factor in this model: S corresponds to the slope of the
tangent of the equilibrium (non-stochastic) model (see Fig. 1, point B).

1 This is referred to as local slope sensitivity in [23].
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Conditional, incremental sensitivity 
for all delays up to 20kyr 
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Skewed PDFs of two-point sensitivity

14

Tipping and state-
dependence of feedbacks

Only state-dependence of 
feedbacks

No state-dependence of 
feedbacks

non-constant feedback factors

non-constant feedback factors

constant feedback factors 
~ Gaussian PDF

-10 -5 0 5 10

0

10

20

T 
[o C]

a

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

de
ns

ity
 [a

u]

d

-10 -5 0 5 10

0

10

20

T 
[o C]

b

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

de
ns

ity
 [a

u]
e

-10 -5 0 5 10
 RCO2

 [Wm-2]

0

10

20

T 
[o C]

c

0 0.5 1 1.5 2 2.5
S [K/(Wm-2)]

0

0.05

0.1

0.15

0.2

de
ns

ity
 [a

u]

f

Low albedo contrast

Standard albedo contrast

NO albedo contrast

Ashwin & von der Heydt, J. Stat. Phys. (2019) ↖  

http://link.springer.com/10.1007/s10955-019-02425-x


Dr. Anna von der Heydt

! Climate sensitivity depends on the background climate state: 

̣ non-constant fast feedback processes, 

̣ multiple equilibrium or oscillatory states (‘tipping’). 

! ‘Flavours’ of (palaeo)climate sensitivity on the ‘climate attractor: 

̣ instantaneous S: available from underlying model (‘nearest 
equilibrium’), 

̣ incremental S: fixed delay Δt, 

̣ two-point S: all delays, two points on attractor. 

! Nonlinearities lead to skewed PDFs of measured climate sensitivity 

̣ Extremes of climate sensitivity seem to relate to high probability of 
tipping.

Conclusions
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