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Need a comprehensive framework to quantify the 
Climate Response!

to the CO2 fertilization effect or decreasing uptake due to a de-
crease in rainfall). For some of the tipping elements, crossing the
tipping point could trigger an abrupt, nonlinear response (e.g.,
conversion of large areas of the Amazon rainforest to a savanna or
seasonally dry forest), while for others, crossing the tipping point
would lead to a more gradual but self-perpetuating response
(large-scale loss of permafrost). There could also be considerable
lags after the crossing of a threshold, particularly for those tipping
elements that involve the melting of large masses of ice. However,
in some cases, ice loss can be very rapid when occurring as
massive iceberg outbreaks (e.g., Heinrich Events).

For some feedback processes, the magnitude—and even the
direction—depend on the rate of climate change. If the rate of
climate change is small, the shift in biomes can track the change in
temperature/moisture, and the biomes may shift gradually, po-
tentially taking up carbon from the atmosphere as the climate warms
and atmospheric CO2 concentration increases. However, if the rate of
climate change is too large or too fast, a tipping point can be crossed,
and a rapid biome shift may occur via extensive disturbances (e.g.,
wildfires, insect attacks, droughts) that can abruptly remove an
existing biome. In some terrestrial cases, such as widespread wild-
fires, there could be a pulse of carbon to the atmosphere, which if
large enough, could influence the trajectory of the Earth System (29).

Varying response rates to a changing climate could lead to
complex biosphere dynamics with implications for feedback
processes. For example, delays in permafrost thawing would most
likely delay the projected northward migration of boreal forests
(30), while warming of the southern areas of these forests could
result in their conversion to steppe grasslands of significantly
lower carbon storage capacity. The overall result would be a
positive feedback to the climate system.

The so-called “greening” of the planet, caused by enhanced
plant growth due to increasing atmospheric CO2 concentration
(31), has increased the land carbon sink in recent decades (32).
However, increasing atmospheric CO2 raises temperature, and
hotter leaves photosynthesize less well. Other feedbacks are also
involved—for instance, warming the soil increases microbial res-
piration, releasing CO2 back into the atmosphere.

Our analysis focuses on the strength of the feedback between
now and 2100. However, several of the feedbacks that show
negligible or very small magnitude by 2100 could nevertheless be
triggered well before then, and they could eventually generate
significant feedback strength over longer timeframes—centuries
and even millennia—and thus, influence the long-term trajectory
of the Earth System. These feedback processes include perma-
frost thawing, decomposition of ocean methane hydrates, in-
creased marine bacterial respiration, and loss of polar ice sheets
accompanied by a rise in sea levels and potential amplification of
temperature rise through changes in ocean circulation (33).

Tipping Cascades. Fig. 3 shows a global map of some potential
tipping cascades. The tipping elements fall into three clusters
based on their estimated threshold temperature (12, 17, 39).
Cascades could be formed when a rise in global temperature
reaches the level of the lower-temperature cluster, activating
tipping elements, such as loss of the Greenland Ice Sheet or Arctic
sea ice. These tipping elements, along with some of the non-
tipping element feedbacks (e.g., gradual weakening of land and
ocean physiological carbon sinks), could push the global average
temperature even higher, inducing tipping in mid- and higher-
temperature clusters. For example, tipping (loss) of the Green-
land Ice Sheet could trigger a critical transition in the Atlantic
Meridional Ocean Circulation (AMOC), which could together, by
causing sea-level rise and Southern Ocean heat accumulation,
accelerate ice loss from the East Antarctic Ice Sheet (32, 40) on
timescales of centuries (41).

Observations of past behavior support an important contri-
bution of changes in ocean circulation to such feedback cascades.
During previous glaciations, the climate system flickered between
two states that seem to reflect changes in convective activity in the
Nordic seas and changes in the activity of the AMOC. These
variations caused typical temperature response patterns called the
“bipolar seesaw” (42–44). During extremely cold conditions in the
north, heat accumulated in the Southern Ocean, and Antarctica
warmed. Eventually, the heat made its way north and generated
subsurface warming that may have been instrumental in destabi-
lizing the edges of the Northern Hemisphere ice sheets (45).

If Greenland and the West Antarctic Ice Sheet melt in the fu-
ture, the freshening and cooling of nearby surface waters will have
significant effects on the ocean circulation. While the probability
of significant circulation changes is difficult to quantify, climate
model simulations suggest that freshwater inputs compatible with
current rates of Greenland melting are sufficient to have mea-
surable effects on ocean temperature and circulation (46, 47).
Sustained warming of the northern high latitudes as a result of this
process could accelerate feedbacks or activate tipping elements
in that region, such as permafrost degradation, loss of Arctic sea
ice, and boreal forest dieback.

While this may seem to be an extreme scenario, it illustrates
that a warming into the range of even the lower-temperature
cluster (i.e., the Paris targets) could lead to tipping in the mid- and
higher-temperature clusters via cascade effects. Based on this
analysis of tipping cascades and taking a risk-averse approach, we
suggest that a potential planetary threshold could occur at a
temperature rise as low as ∼2.0 °C above preindustrial (Fig. 1).

Alternative Stabilized Earth Pathway
If the world’s societies want to avoid crossing a potential threshold
that locks the Earth System into the Hothouse Earth pathway, then
it is critical that they make deliberate decisions to avoid this risk

Fig. 3. Global map of potential tipping cascades. The individual
tipping elements are color- coded according to estimated thresholds
in global average surface temperature (tipping points) (12, 34).
Arrows show the potential interactions among the tipping elements
based on expert elicitation that could generate cascades. Note that,
although the risk for tipping (loss of) the East Antarctic Ice Sheet is
proposed at>5 °C, somemarine-based sectors in East Antarctica may
be vulnerable at lower temperatures (35–38).
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! Equilibrium change in global mean surface temperature after a 
doubling of the atmospheric CO2 concentration.

What is climate sensitivity?
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! No feedbacks:  
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! Equilibrium change in global mean surface temperature after a 
doubling of the atmospheric CO2 concentration.

! With feedbacks: 

What is climate sensitivity?

5
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Radiative 
perturbation 
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Climate System 
(no feedbacks) ΔT = S0 ΔR0
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Climate System 
with feedbacks

ΔT = S0 (ΔR0+c1ΔT) 
= S ΔR0

S = ΔT/ΔR0

! No feedbacks:  

   Planck response S0= 0.3 K/(W/m2)
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! Timescales and equilibrium 
̣ Slow and fast feedback processes. 
̣ Timescale separation. 

! Dependence on the background climate 
̣ (Fast) feedback processes are not “constant”. 

! Tipping points in the climate system 
̣ New ‘flavours’ of climate sensitivity. 
̣ Extremes in climate sensitivity vs probability of tipping. 

Quantifying climate sensitivity: problems
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Rohling et al., Nature 491 (2012) ↖   

[15]. Section 4 finishes with a discussion of conclusions and some challenges for the future.

2 Sensitivities and the climate attractor
sec:sens

In order to understand variability, abrupt transitions and response to perturbations we con-
sider the climate system as a high-dimensional multiscale complex dynamical system whose
evolving trajectories form a climate attractor. The ECS can be defined on this attractor and
regimes or states may be identified where a linear approximation of the response may be
reasonable. Tipping points visible in the GMST will show up as large but occasional shifts
between di↵erent “climate regimes” of the attractor, or indeed di↵erent attractors. We vi-
sualise the attractor by projection onto climate variables relevant for determining ECS, i.e.
the GMST T and the radiative forcing R [32]. Consider the energy balance equation

cT
dT

dt
= Rforcing +Rslow +Rfast �ROLW , (1) e:energybalance

where the left hand side represents the rate of change of the global mean surface temperature
T (with a heat capacity cT ) and on the right hand side Rforcing is the (external) radiative
forcing (including changes in CO2), Rslow (Rfast) is the radiative perturbation due to all
slow (fast) feedback processes within the climate system and ROLW is the outgoing longwave
radiation, respectively. Following the formalism of [26], the specific climate sensitivity is

Sforcing,slow =
�T

�Rforcing +�Rslow
⇡ dT

d(Rforcing +Rslow)
, (2) eq:Sspecific

which equals the Charney sensitivity S if �Rslow is the sum of all slow feedback processes
contributing to the ECS (and under the assumption of time scale separation). In practise,
only some of the slow processes are accessible from palaeoclimate records (e.g. only land
ice), in which case the specific climate sensitivity is only an approximation of the Charney
sensitivity [26] (e.g. S[CO2,LI] is the specific climate sensitivity considering only land ice
changes as slow feedback). The use of the specific climate sensitivity is that it can give a
linear prediction

T
0 = T + Sforcing,slow (�Rforcing +�Rslow) . (3) eq:linpred

For a specific energy balance model including regime shifts we can explicitly calculate ECS
for the di↵erent regimes, see section 3. We note that several other authors have highlighted
the need to improved notes of ECS: these include [7] who propose to use a measure-based
approach to understand climate sensitivity and [11] who consider conditional climate sensi-
tivities constrained by temperature, coupled with resilience measures for switching to other
regimes.

2.1 Observation of the climate attractor

We consider the climate system as a high dimensional dynamical system that evolves along
trajectories x(t) according to a smooth flow

x(t) = 't(x(0)) (4) e:climatesystem

4

Earth system sensitivity 

‘Correct’ for slow feedbacks, e.g.   

‘Equilibrium’ sensitivity S: 

This finally leads to the expressions for the specific climate sensitivities

S[CO2] =
�T

�R[CO2]

=
��T

�R[OLW ] +�R[SI] +�R[surf ] +�R[LI]

(21)

S[CO2,LI] =
�T

�R[CO2] +�R[LI]

=
��T

�R[OLW ] +�R[SI] +�R[surf ]

(22)

S[CO2,LI,SI] =
�T

�R[CO2] +�R[LI] +�R[SI]

=
��T

�R[OLW ] +�R[surf ]

. (23)

The last expression should approximate the sensitivity without feedbacks (i.e. only Planck

feedback), S0 = (�4"�BT
3
)
�1 ' 0.3 K (W m

�2
)
�1
. In the model there is, however, one

more radiation term due to the atmosphere-ocean heat exchange (�Rsurf ), which acts on

fast to intermediate time scales. Therefore, S[CO2,LI,SI] still slightly deviates from the Planck

sensitivity.

S
p

= S[CO2] =
�T

�R[CO2]

(24)

S[CO2,LI] =
�T

�R[CO2] +�R[LI]

(25)
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Last 800 kyr: State dependent feedbacks
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Friedrich et al. Sci. Adv. (2016) ↖   

(with an ensemble range of 3.42 to 6.40 K) when simulated by the
CMIP5 ensemble mean.

Impact of uncertainties
The radiative forcing and global mean SAT reconstruction are both
subject to considerable uncertainties that affect the estimate of S
and thus the resulting global warming projection. Dust changes
are the largest contributor to the uncertainty in global radiative
forcing. Reported values for the glacial-interglacial amplitude of
the global mean dust forcing range from ~0.33 W/m2 (29) to more
than 3 W/m2 [see discussion by Köhler et al. (1)]. Here, we assume
a published value of 1.9 W/m2 that is prone to large uncertainties.
Regarding estimates of global mean SAT change, there appears to
be a reasonable agreement between different studies with respect to
the temporal evolution (fig. S5). However, the correct PI-LGM am-
plitude of global mean SAT change remains less constrained. Pub-
lished amplitudes range from relatively moderate values of 3.00 K
(90% probability range of 1.7 to 3.7 K) (3) and 4.00 ± 0.80 K (21) to
values of 5.80 ± 1.4 K (18) and 6.20 K (90% probability range of
4.60 to 8.30 K) (19). To calculate the effect of uncertainties in tem-
perature reconstructions on our estimate of Swarm and the resulting
global warming projection, we scale our global mean SAT reconstruc-
tion to other reported values. Furthermore, we use an Antarctic tempera-
ture reconstruction (30) scaled by a high and a low polar amplification

factor (31). Using a PI-LGM amplitude of only 3 K (3) for our global
mean SAT reconstruction results in an Swarm of only 0.68 K W−1 m2 (or
2.52 K per CO2 doubling) (table S3), which is approximately half the
value found for our original temperature reconstruction. The associated
greenhouse warming for the year 2100 amounts to 3.84 K. An amplitude
of 4.00 K, as derived from a multimodel ensemble in combination with
global proxy data (21), results in a warming of 4.68 K by 2100 CE. On
the basis of the estimates of S using scaled Antarctic temperature re-
construction, the global warming at the end of the 21st century amounts
to 6.32 and 4.87 K for the low (1.2) and the high (1.9) polar amplifi-
cation, respectively.

Another source of uncertainty is introduced through different
warming levels during previous interglacial periods. For example,
our proxy-based temperature reconstruction exhibits an overall
stronger interglacial warming than does our model-based one
(Fig. 2A). As a result, Swarm derived by using only the proxy-based
global mean SAT reconstruction is slightly larger than the Swarm

calculated from the model-based reconstruction (table S3), even
though the PI-LGM temperature amplitude is larger for the model-
based SAT change. This highlights the need for a combined model-
proxy approach for deriving SAT reconstructions.

DISCUSSION
Constraining the magnitude of future greenhouse warming is critical
for risk assessment and adaptation strategies. Using our combined
proxy/modeling approach based on the 784-ka SST data and applying
it to the projected atmospheric CO2 concentrations and radiative for-
cings results in SAT changes that overlap with the upper range of cur-
rent CMIP5 RCP8.5 projections. The resulting paleodata-based
estimate of surface warming by 2100 CE is ~16% higher than the
CMIP5 ensemble mean projection. Our results suggest that a global
surface temperature increase of 4 K by 2100 CE (compared to the

Fig. 3. Sensitivity of global mean SAT anomalies to radiative forcing anomalies.
Scatter diagram (circles) of reconstructed global mean SAT anomalies (K) (Fig. 2B)
versus net radiative forcing anomalies (W/m2) (Fig. 2D) for the last 784,000 years.
Anomalies are calculated with respect to PI values. Two-dimensional kernel den-
sity estimate of paleo-SAT/radiative forcing data (blue shading). The thick dashed
yellow curve represents nonlinear regression of paleo-SAT/radiative forcing data,
along with uncertainty ranges (dashed black curves; see Materials and Methods).
The thick cyan line represents linear regression for cold phases. The slope represents
Scold. The thick red line represents linear regression for warm phases. The slope rep-
resents Swarm. Dashed horizontal lines denote warm (orange) and cold (blue) phases
using 1 SD of the reconstructed global mean SAT anomalies as a separator. Cold
(warm) phases are defined by SAT anomalies of <−5.12 K (>−1.66 K). The CMIP5
transient model projections using the RCP8.5 forcing scenario are presented by pur-
ple circles. Using Swarm (orange shading) and taking into account the ocean heat
uptake efficiency, we can calculate the transient response to the RCP8.5 radiative
forcing. The resulting paleo-based projection with the corresponding uncertainty
ranges is represented by cyan shading (see Materials and Methods).

Fig. 4. Future greenhouse warming projections. Ensemble mean simulated
global mean surface temperature (K) evolution using all models of the CMIP5 multi-
model ensemble in their historical and RCP8.5 simulations (thick red line) and
corresponding uncertainty range (orange shading), along with estimates (blue) based
on Swarm, an estimate of ocean heat uptake efficiency and the RCP8.5 radiative
forcing time series. The corresponding uncertainty range is depicted as cyan shading
(see Materials and Methods).
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1818 P. Köhler et al.: State dependency of the equilibrium climate sensitivity
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Figure 9. Probability density function of different approaches to calculate specific equilibrium climate sensitivity, S[CO2,LI]. Results of this
study are based on pointwise analysis of the ice core (last 0.8Myr) and the Hönisch (last 2.1Myr) data for “cold” periods (1R[CO2,LI] <

�3.5Wm�2) and “warm” periods (1R[CO2,LI] > �3.5Wm�2). In von der Heydt et al. (2014), a similar split of the ice core data was
performed. We show their results based on similar 1Tg as obtained here published in the Supporting Information in von der Heydt et al.
(2014). Martínez-Botí et al. (2015) calculated S[CO2,LI] either for ice core data of the whole last 0.8Myr or based on �

11B for 0.8Myr of the
Pliocene between 2.5–3.3MyrBP. Vertical lines and labels give the mean of the different results.

Furthermore, in Fedorov et al. (2013) climate simulation re-
sults have been discussed to understand which processes and
mechanisms were responsible for the spatially very hetero-
geneous changes observed during the last 5Myr, e.g. the in-
crease in the polar amplification factor over time. Since the
results of Fedorov et al. (2013) were unable to explain all
observations, it was concluded that a combination of differ-
ent dynamical feedbacks is underestimated in the climate
models. We are not able to generate spatially explicit re-
sults. However, from our analysis we could conclude that the
equilibrium climate sensitivity represented by S[CO2,LI] was
a function of background climate state and probably changed
dramatically between conditions with and without Northern
Hemisphere land ice.
The contribution of greenhouse gas radiative forcing and

of seasonally and latitudinally variable incoming solar radi-
ation to the simulated global temperature anomalies of the
last eight interglacials have been analysed individually be-
fore (Yin and Berger, 2012). It was found that the green-
house gas forcing was the main driver of the simulated tem-
perature change with the incoming solar radiation amplify-
ing or dampening its signal for all but one interglacial (Ma-
rine Isotope Stage (MIS) 7), with two interglacials (MIS 1
and MIS 19) having variations close to zero. Furthermore,

they calculated the ECS (temperature rise for a doubling of
CO2) for the different interglacial background conditions and
found ECS to decrease with increasing background tempera-
ture. A calculation of climate sensitivity for individual points
in time has been performed before (PALAEOSENS-Project
Members, 2012) but has been rejected due to large uncertain-
ties, mainly during interglacials since in the definition of S,
one then needs to calculate the ratio of two small numbers
in 1Tg and 1R[CO2,LI], which has typically a low signal-
to-noise ratio. At first glance, this might seem contrary to
our finding of a larger climate sensitivity during late Pleis-
tocene interglacials when compared to late Pleistocene full
glacial conditions. However, as mentioned already in the pre-
vious paragraph, the comparison of (palaeo)data-based cal-
culations of S with ECS calculated from climate models is
not directly possible. Furthermore, in our approach we in-
clude changes in land ice sheet (albedo forcing or 1R[LI]),
while Yin and Berger (2012) kept ice sheets at present state.
When investigating S[CO2,LI] over the whole range of climate
states (from full glacial conditions to a warm Pliocene with a
(nearly) ice-free Northern Hemisphere resulting in a variable
forcing term 1R[LI]), we therefore probe a completely dif-
ferent climate regime, which is not directly comparable with
results obtained from simulations of interglacials only.

Clim. Past, 11, 1801–1823, 2015 www.clim-past.net/11/1801/2015/

Köhler, von der Heydt, et al. Clim. Past (2015) ↖   

Eqilibrium climate sensitivity (ECS)  is higher during 
interglacials than in cold periods.

von der Heydt et al. Curr. Clim. Change Rep. (2016) ↖   

http://advances.sciencemag.org/cgi/doi/10.1126/sciadv.1501923
http://dx.doi.org/10.1007/s40641-016-0049-3
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! Uncertainty from observations, model, unaccounted processes  

̣ Big uncertainties in quantification for radiative forcing. 

̣ Palaeoclimate: Big uncertainty in climate reconstruction. 

! Climate dynamics: 

̣ feedback processes change with background climate! 

̣ Very high climate sensitivity: 

• nonlinearities in the climate system - evidence for 
tipping?

Distributions of climate sensitivity - origin of 
uncertainty?

10



Dr. Anna von der Heydt

Palaeoclimate sensitivity S: trajectory on a 
‘climate attractor’
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von der Heydt & Ashwin, Dyn. Stat. 
Clim. Syst. 1 dzx001 (2016) ↖  

4 Peter Ashwin, Anna S. von der Heydt

clusions and some challenges for the future. Appendix A extends results of
[36] and examines extremes of sensitivity associated with tipping points in a
more realistic physics-based multi-box model of the glacial cycles by Gildor
and Tziperman [17].

2 Sensitivities and the climate attractor

In order to understand variability, abrupt transitions and response to per-
turbations we consider the climate system as a high-dimensional multiscale
complex dynamical system whose evolving trajectories form a climate attrac-

tor. The ECS can be defined on this attractor and regimes or states may be
identified where a linear approximation of the response may be reasonable.
Tipping points visible in the GMST will show up as large but occasional shifts
between di↵erent ‘climate regimes’ of the attractor, or indeed di↵erent attrac-
tors. We visualise the attractor by projection onto climate variables relevant
for determining ECS, i.e. the GMST T and the radiative forcing R per unit
area [36]. Consider the energy balance model

cT
dT

dt
= Rforcing +Rslow +Rfast �ROLW, (1)

where the left hand side represents the rate of change of the global mean sur-
face temperature T (with specific heat capacity cT ) and on the right hand side
Rforcing is the (external) radiative forcing (including changes in CO2), Rslow

(Rfast) is the radiative perturbation due to all slow (fast) feedback processes
within the climate system and ROLW is the outgoing longwave radiation, re-
spectively. Following the formalism of [30], the specific climate sensitivity is

Sforcing,slow =
�T

�Rforcing +�Rslow

⇡ dT

d(Rforcing +Rslow)
, (2)

which equals the Charney sensitivity S if �Rslow is the sum of all slow feed-
back processes contributing to the ECS (and under the assumption of time
scale separation). In practise, only some of the slow processes are accessible
from palaeoclimate records (e.g. only land ice), in which case the specific cli-
mate sensitivity is only an approximation of the Charney sensitivity [30] (e.g.
S[CO2,LI] is the specific climate sensitivity considering only land ice changes as
slow feedback). This ECS gives a linear prediction for change in temperature:

T
0 = T + Sforcing,slow (�Rforcing +�Rslow) . (3)

For a specific energy balance model including regime shifts we can explicitly
calculate ECS for the di↵erent regimes, see section 3. We note that several
other authors have highlighted the need to improved notions of ECS: this
includes [8] who propose to use a measure-based approach to understand cli-
mate sensitivity and [12] who consider conditional climate sensitivities con-
strained by temperature, coupled with resilience measures for switching to
other regimes.
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clusions and some challenges for the future. Appendix A extends results of
[36] and examines extremes of sensitivity associated with tipping points in a
more realistic physics-based multi-box model of the glacial cycles by Gildor
and Tziperman [17].

2 Sensitivities and the climate attractor

In order to understand variability, abrupt transitions and response to per-
turbations we consider the climate system as a high-dimensional multiscale
complex dynamical system whose evolving trajectories form a climate attrac-

tor. The ECS can be defined on this attractor and regimes or states may be
identified where a linear approximation of the response may be reasonable.
Tipping points visible in the GMST will show up as large but occasional shifts
between di↵erent ‘climate regimes’ of the attractor, or indeed di↵erent attrac-
tors. We visualise the attractor by projection onto climate variables relevant
for determining ECS, i.e. the GMST T and the radiative forcing R per unit
area [36]. Consider the energy balance model

cT
dT

dt
= Rforcing +Rslow +Rfast �ROLW, (1)

where the left hand side represents the rate of change of the global mean sur-
face temperature T (with specific heat capacity cT ) and on the right hand side
Rforcing is the (external) radiative forcing (including changes in CO2), Rslow

(Rfast) is the radiative perturbation due to all slow (fast) feedback processes
within the climate system and ROLW is the outgoing longwave radiation, re-
spectively. Following the formalism of [30], the specific climate sensitivity is

Sforcing,slow =
�T

�Rforcing +�Rslow

⇡ dT

d(Rforcing +Rslow)
, (2)

which equals the Charney sensitivity S if �Rslow is the sum of all slow feed-
back processes contributing to the ECS (and under the assumption of time
scale separation). In practise, only some of the slow processes are accessible
from palaeoclimate records (e.g. only land ice), in which case the specific cli-
mate sensitivity is only an approximation of the Charney sensitivity [30] (e.g.
S[CO2,LI] is the specific climate sensitivity considering only land ice changes as
slow feedback). This ECS gives a linear prediction for change in temperature:

T
0 = T + Sforcing,slow (�Rforcing +�Rslow) . (3)

For a specific energy balance model including regime shifts we can explicitly
calculate ECS for the di↵erent regimes, see section 3. We note that several
other authors have highlighted the need to improved notions of ECS: this
includes [8] who propose to use a measure-based approach to understand cli-
mate sensitivity and [12] who consider conditional climate sensitivities con-
strained by temperature, coupled with resilience measures for switching to
other regimes.

https://doi-org.proxy.library.uu.nl/10.1093/climsys/dzx001


Dr. Anna von der Heydt

The ‘climate attractor’

12

�R

T

A

B

C

D

Tthr

E

F

Ashwin & von der Heydt, J. Stat. Phys. (2019) ↖  

http://link.springer.com/10.1007/s10955-019-02425-x


Dr. Anna von der Heydt

The ‘climate attractor’

12

�R

T

A

B

C

D

Tthr

E

F Instantaneous/Local 
slope sensitivity

CO2 and water feedbacks. As in [11], we assume that the albedo varies with temperature
due to changes in land-ice feedback processes: they assume there are threshold temperatures
T1 < T2 associated with changes of albedo ↵(T ) and define a function

⌃(T ) =
(T � T1)

T2 � T1
H(T � T1)H(T2 � T )) +H(T � T2) (16)

that switches from 0 for T < T1 to 1 for T > T2: H(T ) is approximately a Heaviside unit
step function and we use a smooth approximation H(T ) = (1 + tanh(T/✏H))/2 as in [11].
We then set

↵(T ) = ↵1(1� ⌃(T )) + ↵2⌃(T )

to change smoothly from ↵1 of an ice surface (T < T1) to ↵2 of an ocean surface (T > T2)
as in [11]).

Finally, we include a stochastic term to (15) that represents unresolved subgrid processes
with amplitude ⌘T :

cT dT = F (T,C)dt+ ⌘TdWT . (17) eq:EBM

The parameters used are listed in Table 1 except where specified as di↵erent. Note that the
deterministic equilibria of (15) are at F (T,C) = 0, i.e at

C = �(T ) := C0 exp


✏(T )�T 4 �Q0(1� ↵(T ))�G0

G1

�
. (18) eq:EBMequil

This means there is a unique equilibrium for each T , but not necessarily for each C: in
particular as discussed in [11, 35] there are three branches of equilibria for a range of C. We
note that from (18) we have at equilibrium that

�R[CO2] = ✏(T )�T 4 �Q0(1� ↵(T ))�G0 (19) eq:EBMDRTeqm

and for the parameters used we have bistability in the region

�20.77 Wm
�2

< �R < 21.93 Wm
�2
, 102 ppm < C < 777 ppm, (20) eq:bistabrange

see the red line in Fig. 3. We can define the instantaneous sensitivity2 as

S =


d

dT
�R[CO2]

��1

=
⇥
(✏0T + 4✏)�T 3 +Q0↵

0⇤�1
, (21) eq:iSens

which corresponds to the slope of the tangent of the equilibrium (non-stochastic) model (see
Fig. 1, point B). Note that for T � T0 we have ✏(T ) ⇡ 1�m and ↵

0 = 0 and so

S ⇡ (4�(1�m)T 3)�1 (22) eq:SfromW

while for T ⌧ T0 we have ✏(T ) ⇡ 1 and ↵
0 = 0 and

S ⇡ (4�T 3)�1 (23) eq:SfromC

2This is referred to as local slope sensitivity in [19].
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Let us assume the current state at time t = 0 of the climate system is given by a measure
�0 on phase space X (denoted by point A in Fig. 1). Note that this will always be a measure
rather than a point because of lack of knowledge of sub-grid parametrized processes (e.g.
[30]) but it will project onto the current values (T0, R0) = (T (x), R(x)) for all x in the
support of �0. As time progresses, this state will spread to give a measure at time t that is

�t(A) = �('�t(A))

for any A ⇢ X (Fig. 1 shows a trajectory in black and others from the ensemble starting at
A in grey). The incremental sensitivity for a time interval �t is then

S
�t
0 (x) =

T ('�t(x))� T0

R('�t(x))�R0
(8) eq:Sinc

with distribution
P(S�t

0 2 A) = �({x : S
�t
0 (x) 2 A}).

Over long time, if there is decay of correlations and mixing of trajectories on the climate
attractor [31, 30] then in a weak sense �t ! M , and so we expect the distribution of long-
term incremental sensitivities for �t ! 1 become time-independent for typical trajectories
within the attractor:

P(S1
0 2 A) = M({x : S

1
0 (x) 2 A}). (9) eq:S0inf

where

S
1
0 (x) =

T (x)� T0

R(x)�R0
.

Note that (7) means that the distribution of long-term sensitivities starting at (R0, T0) can
be written in terms of the geometry of the projected measure µ

P(S1
0 2 A) = µ({(T1, R1) : S

1
0,1 2 A}) (10) e:longtermsens

where we define the two-point sensitivity as

S
1
0,1 =

T1 � T0

R1 �R0
. (11) eq:S01

The distribution of long-term incremental sensitivity (10) for a generic choice of the initial
climate state suggests a time-independent notion of climate sensitivity that can be found by
picking pairs of points (R0,1, T0,1) independently distributed according to µ and evaluating
(2). This was introduced in [32] but we propose a simpler notation here.

This means that for any A ⇢ R we can use µ to assign a probability to the sensitivity
being in A:

P(S1
0,1 2 A) := µ⇥ µ

��
(T0, R0), (T1, R1) : S

1
0,1 2 A

 �
. (12) eq:Sdist

with S
1
0,1 defined as in (11). Note that in some sense this will give a maximal set of pos-

sibilities for the sensitivities in that it compares the observables T and R over all possible
time points and possible trajectories of the system. This is comparable to the conditional
climate sensitivity of [11] except rather than dividing into regimes, they restrict to deviations
of temperature at most �T from T0. In the case that the sensitivity is fixed at S0, note that
S
1
0,1 is a Dirac �-distribution centred at S0.
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̣ Ocean biogeochemistry & dynamic atmospheric pCO2, 

̣ Milankovitch forcing: insolation per box & NH land ice ablation.
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State dependent CS glacial cycles 
(conceptual climate model)
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As in energy balance model: 

High values of S[CO2,LI] correspond 
to high probability of regime (cold/
warm) transition

Ashwin & von der Heydt, J. Stat. Phys. (2019) ↖  

Two-point sensitivity & probability of tipping 
(conceptual climate model)
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! Climate sensitivity depends on the background climate state: 

̣ non-constant fast feedback processes, 

̣ multiple equilibrium or oscillatory states (‘tipping’). 

! ‘Flavours’ of (palaeo)climate sensitivity on the ‘climate attractor: 

̣ instantaneous S: available from underlying model (‘nearest 
equilibrium’), 

̣ incremental S: fixed delay Δt, 

̣ two-point S: all delays, two points on attractor. 

! Nonlinearities lead to skewed PDFs of measured climate sensitivity 

̣ Extremes of climate sensitivity seem to relate to high probability of 
tipping.

Conclusions

20


