
STRATIGRAPHER: MAKING

AND USING LITHOLOGS IN R

Devleeschouwer X. 1, Da Silva A.-C. 2, Boulvain F. 2 & Wouters S. 1, 2*

1. O.D. Earth and History of Life, Royal Belgian Institute of Natural
Sciences

2. Sedimentary Petrology, University of Liège

* Corresponding and presenting author:
sebastien.wouters@doct.uliege.be

1

This presentation is an introduction to R and to StratigrapheR. It was

originally supposed to be a poster only on StratigrapheR presented

at EGU 2020. As the current situation of confinement made the
physical EGU 2020 impossible, and brought the virtual EGU, more

freedom was given to provide supplementary material.

We therefore present what was supposed to be a presentation

available on the web, which is made to support general discussions

[what we wanted to call a R’staurant] on R software development

concepts for geology purposes.

2

This is the R’staurant supportive power point,

designed to provide a basis in R for geologists:

- Quick bullet points for fundamental R concepts

- Starting manual for StratigrapheR

- Links to other internet resources

- In development (v. 0.0.1A, for EGU 2020)

- Open to any suggestion or correction

Contact: sebastien.wouters@doct.uliege.be

3

 Introduction…………………………………...5

 General R coding…………………………...11

 Basic tutorials…………………………………12

 Efficient R coding……………………………13

 Avoiding common problems……..………17

 numeric values……………………………….18

 text and characters………………………....20

 StratigrapheR………………………………...22

 PLEASE HELP ME, my code does not work and I am desperately stuck !!!!.....41

CHAPTERS

4

INTRODUCTION

Getting the necessary software

5

WHY R ?

 It is free

 It is awesome

 It will change your life

 It can make software evolve by a community effort

6

 Download R on the Comprehensive R Archive Network (CRAN)

https://cran.r-project.org/ (or type ‘download R’ in your browser)

 Download RStudio on the RStudio website

https://rstudio.com/products/rstudio/#rstudio-desktop

(or type ‘rstudio’ in your browser)

7

HOW TO GET R AND RSTUDIO ?

 RStudio is a free scripting

interface for R

 It is widely accepted as

the norm for R

interfacing

 It will make your life

easier

8

d

WHY RSTUDIO ?

 Go to Packages

 Click on Install

 Type the name of the

package you want to

install

9

HOW TO GET NEW PACKAGES ?

 To get packages you can also run the function

install.packages(), with the name of the package:

10

HOW TO GET NEW PACKAGES ?

install.packages("StratigrapheR")

 To upload the package content and be able to work with it,

you need to invoke it every time you open R:

library(StratigrapheR)

GENERAL R CODING

A few general things to keep in mind

11

BASIC TUTORIALS

 Great R basic tutorials exist, for instance:

https://cyclismo.org/tutorial/R/

 You can usually find good tutorials by googling them, for instance
I got the following by googling ‘R basic plots’:

https://sites.harding.edu/fmccown/r/

12

EFFICIENT R CODING

 R is an interpreted language.

What does that mean ?

 The code is not compiled: it runs directly

How is that done ?

 The base R functions are pre-compiled, and any script ultimately

redirects towards these pre-compiled functions

Why should I care ?

 This affects the speed of computations

13

 How do I code R scripts to make computations fast ?

The general rule is to avoid loops: ‘for’ loops and ‘repeat’ loops.

Such loops are efficient in compiled languages such as C or

Fortran, however they take a lot of time in R.

 How do I avoid loops ?

Find basic functions in R that do what you want

 How can I find such functions ?

Google can offer a good start, Stack overflow is also a good way to

find answers to questions that were already asked by other users;

https://stackoverflow.com/questions/tagged/r

EFFICIENT R CODING

14

 Could you show me an example of a function that allows to

avoid loops ?

Sure thing, here is how to compute the cumulative sum of the
sequence of 1 to 10:

t <- c(1)

for(i in 2:10) t <- c(t, i + t[i-1])

t # this is obtained by the ‘for’ loop

#> [1] 1 3 6 10 15 21 28 36 45 55

cumsum(1:10) # this is obtained using the appropriate function

#> [1] 1 3 6 10 15 21 28 36 45 55

EFFICIENT R CODING

15

 What if I cannot avoid a loop ?

Try to confine the looped part of the code to the strict minimum. You

can further isolate the loops using the apply() family of functions,
that loops functions more efficiently. For a tutorial on these

functions:

https://www.guru99.com/r-apply-sapply-tapply.html

EFFICIENT R CODING

16

AVOIDING COMMON PROBLEMS

A few things I wish I knew before getting into R, and that allow you to avoid

common problems that beginners will eventually run into, and that drive

you INSANE trying to understand what is happening !

17

Numeric values (numbers having decimals) in R can pose a problem, as they are stored in the computer as

fractions. This is called floating-point arithmetic. Roughly put, this means that the number has an imprecision of

a scale of 10-15 of the unit (e.g. for a value of 1.00 x 1025, the imprecision is of a scale of 1010). This is generally a

minor problem for general calculations. However this can be challenging when trying to identify specific values,

e.g. 0.1 will be understood in the computer in another way, which should look like this: 0.100000000000000561.

One way to avoid this problem (see the code in the next slide) is to round the values to an acceptable level, and

to compare them using the all.equal() function, which checks for equality within numerical tolerance (at the

opposite of the == comparison relational operator and of the identical() function). This offers a double security

to insure that the possible accumulation of computational error will not affect the identification of equal values

(see the code in the next slide).

AVOIDING COMMON PROBLEMS:

NUMERIC VALUES
18

a <- 1 + 1e-15 # this represents a value supposed to be 1,

but deviating from it due to computational error

a == 1 # failure

#> [1] FALSE

identical(a, 1) # failure

#> [1] FALSE

all.equal(a, 1) # acceptable

#> [1] TRUE

round(a, 3) == 1 # acceptable

#> [1] TRUE

identical(round(a, 3), 1) # acceptable

#> [1] TRUE

all.equal(round(a, 3), 1) # SUGGESTED OPTION

#> [1] TRUE

19
AVOIDING COMMON PROBLEMS:

NUMERIC VALUES

 How do I read text files ?

Use the readLines() function for pure text, read.table(), read.csv(), read.fwf() to
open respectively; tables where columns are separated by specific characters,
csv files, and fixed-width columns tables.

AVOIDING COMMON PROBLEMS:

TEXT AND CHARACTERS
20

!
The stringsAsFactors parameter:

This parameter is present in most functions reading tables and

creating data frames (i.e. the format for tables in R). By default it is

generally set to TRUE. This means that each string (i.e. each element

made up of text characters) will be set in another format, as a factor.
This can be problematic: factors are not reacting similarly than

characters in most functions. To avoid any problem it is here advised

to set stringsAsFactors as FALSE when creating any data frame to

avoid such problems.

 How do I identify specific characters sequences, for instance in a text file where the
information is under the form ‘data.1: 147’

Use pattern match and replacement, using for instance the grep(), grepl() and sub()

functions, or the stringr package. Character pattern matching use characters having a

specific meaning (such as ^, [,], -, + and $ in the example below). A sequence of

characters used to identify a text pattern is called a regular expression. For more

information on regular expression in R follow this link:

http://biostat.mc.vanderbilt.edu/wiki/pub/Main/SvetlanaEdenRFiles/regExprTalk.pdf

a <- c("data.1: 147", "data.2: 983")

a

#> [1] "data.1: 147" "data.2: 983"

a[grepl("^data.1: [0-9]+$", a)]

#> [1] "data.1: 147"

as.numeric(sub("^data.1: ", "", a[grepl("^data.1: [0-9]+$", a)]))

#> [1] 147

21AVOIDING COMMON PROBLEMS:

TEXT AND CHARACTERS

StratigrapheR

A package to make lithologs

22

WHY StratigrapheR ?

 It allows to automate repetitive drawings of lithologs

 It generates a basis for lithologs that can be improved in vector drawing software

 It allows to integrate lithologs to other data processing in R

 It can be made to evolve by anyone willing to learn R

23

 Working with stratigraphic data: the ‘lim’ object

 The lim object stores information of intervals: lower and upper

boundaries (‘l’ and ‘r’, for left and right boundary), a rule for the

inclusion of the boundaries (‘b’), and an id (‘id’)

24

interval <- as.lim(l = c(0,1,2), r = c(0.5,2,2.5), id = c("Int. 1","Int.2","Int.3"))

interval

#> $l

#> [1] 0 1 2

#>

#> $r

#> [1] 0.5 2.0 2.5

#>

#> $id

#> [1] "Int. 1" "Int.2" "Int.3"

#>

#> $b

#> [1] "[]" "[]" "[]"

25

interval <- as.lim(l = c(0,1,2), r = c(0.5,2,2.5), id = c("Int. 1","Int.2","Int.3"))

plot.new()

plot.window(ylim = c(-0.5, 2.5), xlim = c(0, 2.5))

axis(3, pos = 1.5, las = 1)

infobar(ymin = 0, ymax = 1, xmin = interval$l, xmax = interval$r,

labels = c(interval$id), srt = 0)

 The lim objects can be used for visualising intervals

 The formalisation of intervals with the lim objects allows to define several functions:

are.lim.nonunique() checks whether intervals are duplicated

are.lim.nonadjacent() checks if the intervals share adjacent boundaries

are.lim.distinct() checks whether the intervals are overlapping

simp.lim() merges overlapping intervals having identical id

flip.lim() finds the complementary intervals of a set of intervals (i.e. the gaps)

mid.lim() defines intervals in between data points

in.lim() finds which values belong to which intervals

26

 The pdfDisplay() function can be used to generate and open plots of any size

 The plot.new() and plot.window() functions are used to introduce an empty plot

 The minorAxis() function allows to have an axis with minor ticks

27

graphical_function <- function()

{

opar <- par()$mar # Save initial graphical parameters

par(mar = c(2,3,0,1))

plot.new()

plot.window(xlim = c(0,1), ylim = c(0,1))

axis(1)

minorAxis(2, at.maj = seq(0, 1, 0.5), n = 5, las = 1)

points(c(0.25, 0.75), c(0.75, 0.75), pch = 19)

polygon(c(0.1, 0.25, 0.75, 0.9, 0.75, 0.25),

c(0.5, 0.25, 0.25, 0.5, 0.4, 0.4), lwd = 2)

par(mar = opar) # Restore initial graphical parameters

}

pdfDisplay(graphical_function(),"graphical_function", width = 3,

height = 2)

 The multigons() function plots several polygons at once

28

i <- c(rep("A1",6), rep("A2",6), rep("A3",6)) # Polygon ids

x <- c(1,2,3,3,2,1,2,3,4,4,3,2,3,4,5,5,4,3) # x coordinates

y <- c(1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6) # y coordinates

plot.new()

plot.window(xlim = c(0,6), ylim = c(0,7))

multigons(i, x, y,

front = "A2", # This gets the polygon A2 in front of all others

density = c(NA, 5, 10), # Different shading density

scol = "grey80", # Same shading color

col = c("black", "grey20", "white"), # Different background color

lwd = 2, # Width of border lines for all polygons

slty = 2, # Shading lines type, same for all polygons

slwd = 1) # Shading lines width, same for all polygons

 The multilines() function plots several polylines at once

29

i <- c(rep("A1",6), rep("A2",6), rep("A3",6))

x <- c(1,2,3,3,2,1,4,5,6,6,5,4,7,8,9,9,8,7)

y <- c(1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6)

plot.new()

plot.window(xlim = c(0,10), ylim = c(0,7))

multilines(i, x, y, j = c("A3", "A1", "A2"), lty = c(1,2,3), lwd = 2,

type = c("l", "o", "o"), pch = c(NA,21,24), cex = 1, bg = "black")

 Pre-drawn SVG objects can be imported using the pointsvg() function

 These SVG objects can be directly drawn using centresvg() or framesvg()

30

svg.file.directory <- tempfile(fileext = ".svg") # Creates temporary file

writeLines(example.ammonite.svg, svg.file.directory) # Writes svg in the file

ammonite.drawing <- pointsvg(file = svg.file.directory) # Provides file

plot.new()

plot.window(xlim = c(-2, 2), ylim = c(-2, 5))

axis(1)

axis(2, las = 2)

centresvg(ammonite.drawing, 0, c(3,0), xfac = 2, yfac = 2,

col = c("grey","white"))

 Using centresvg() or framesvg() allows to plot the SVG object several times with
one call of the function

31

centresvg(ammonite.drawing, 0, c(3,0), xfac = 2, yfac = 2,

col = c("grey","white"))

 The changesvg() function can change the SVG object:

 Change of the order of plotting of the polylines and polygons

 Removal of some of the polylines or polygons

 Inversion of the figure in x and/or y

!
This code won’t run

correctly if you didn’t run the

code in preceding slides

32

id l r h colour litho

B1 0 1 3 grey S

B2 1 3 4 grey L

B3 3 4 5 black C

B4 4 9 4 white L

B5 9 11 4 white L

information for each bed: id identifies each bed, l and r provide the lower

and upper boundaries, h the hardness, and the colour is provided along

with a code for lithology (S for shale, L for Limestone, C for chert).

 The information for the beds in a litholog can be provided as a table (which in R

corresponds to a data frame object):

View(bed.example)

 Such a table is provided in StratigrapheR as an example:

 The data frame describing the beds can be merged with a legend data frame to
attribute a symbology to the beds, based on a common column (in our case, litho,

standing for lithology)

33

legend <- data.frame(litho = c("S", "L", "C"),

col = c("grey30", "grey90", "white"),

density = c(30, 0, 10),

angle = c(180, 0, 45), stringsAsFactors = FALSE)

View(legend)

library(dplyr)

bed.legend <- left_join(bed.example,

legend,

by = "litho")

View(bed.legend)

 The merging is done here by the left_join() function of the dplyr package

34

 Based on the information of the provided data frames, polygons coordinates can

be defined using the litholog() function, and its output can be plotted with the
correct symbology using multigons(). Text can be added in the beds using bedtext()

basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)

plot.new()

plot.window(xlim = c(0,6), ylim = c(-1,77))

minorAxis(2, at.maj = seq(0, 75, 5), n = 5)

multigons(basic.log$i, x = basic.log$xy, y = basic.log$dt,

col = bed.legend$col,

density = bed.legend$density,

angle = bed.legend$angle)

bedtext(labels = bed.example$id,

l = bed.example$l,

r = bed.example$r,

x = 0.5, # x position where to centre the text

ymin = 3) # ymin defines the minimum thickness

for the beds where text can be added

!
This code won’t run

correctly if you didn’t run the

code in preceding slides

35

 A litholog created via the litholog() function can be modified. To add thickness

variations to beds, the weldlog() function can be used:

s1 <- sinpoint(5,0,0.5,nwave = 1.5)

s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)

s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)

final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),

j = c("s1","s1","s1","s3","s2","s2","s1"), warn = FALSE)

plot.new()

plot.window(xlim = c(0,6), ylim = c(-1,77))

minorAxis(2, at.maj = seq(0, 75, 5), n = 5, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,

col = bed.legend$col,

density = bed.legend$density,

angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,

x = 0.75, ymin = 3)

!
This code won’t run

correctly if you didn’t run the

code in preceding slides

Code repeated from earlier examples ----

basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)

legend <- data.frame(litho = c("S", "L", "C"),

col = c("grey30", "grey90", "white"),

density = c(30, 0,10),

angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")

s1 <- sinpoint(5,0,0.5,nwave = 1.5)

s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)

s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)

final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),

j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)

plot.new()

plot.window(xlim = c(-1.5,8), ylim = c(-1,81))

minorAxis(2, at.maj = seq(0, 75, 5), n = 5, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,

col = bed.legend$col,

density = bed.legend$density,

angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,

x = 0.5, ymin = 2)

legend.chron <- data.frame(polarity = c("N", "R"),

bg.col = c("black", "white"),

text.col = c("white", "black"),

stringsAsFactors = FALSE)

chron.legend <- dplyr::left_join(chron.example,legend.chron, by = "polarity")

infobar(-1.5, -1, chron.legend$l, chron.legend$r,

labels = chron.legend$polarity,

m = list(col = chron.legend$bg.col),

t = list(col = chron.legend$text.col),

srt = 0)

colour <- bed.example$colour

colour[colour == "darkgrey"] <- "grey20"

colour[colour == "brown"] <- "tan4"

infobar(-0.25, -0.75, bed.example$l, bed.example$r,

m = list(col = colour))

text(-0.5, 79, "Colour", srt = 90)

text(-1.25, 79, "Magnetochrons", srt = 90)

axis(4, at = proxy.example$dt, labels = proxy.example$name,

pos = 6, lwd = 0, lwd.ticks = 1, las = 1)

Additional

information can

be provided using

infobar() for

stratigraphical or

lithological

information, text()

for text, and axis()

e.g. for samples

positions

37

log.function <- function(xlim = c(-2.5,7), ylim = c(-1,77))

{

plot.new()

plot.window(xlim = xlim, ylim = ylim)

minorAxis(2, at.maj = seq(0, 75, 5), n = 5, pos = -1.75, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,

col = bed.legend$col,

density = bed.legend$density,

angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,

x = 1, edge = TRUE, ymin = 2)

centresvg(example.ammonite, 6,

fossil.example$dt[fossil.example$type == "ammonite"],

xfac = 0.5)

centresvg(example.belemnite, 6,

fossil.example$dt[fossil.example$type == "belemnite"],

xfac = 0.5)

infobar(-1.5, -1, chron.legend$l, chron.legend$r,

labels = chron.legend$id,

m = list(col = chron.legend$bg.col),

t = list(col = chron.legend$text.col))

infobar(-0.25, -0.75, bed.example$l, bed.example$r,

m = list(col = colour))

}

gr <- function()

{

opar <- par() # Save initial graphical parameters

par(mar = c(1,2,1,2), yaxs = "i")

for(i in 1:0)

{

ylim <- c(0,40)

log.function(ylim = ylim + 40*i)

}

par(mar = opar$mar, myaxs = opar$yaxs) # Restore initial graphical parameters

}

pdfDisplay(gr(), name = "divided log", width = 3, height = 5) !
This code won’t run

correctly if you didn’t run the

code in preceding slides

The litholog plotting code can be set into a function, and used to plot only a part of the

log, to be able to latter plot it onto several pages (using for instance LaTeX)

Code repeated from earlier examples ----

basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)

legend <- data.frame(litho = c("S", "L", "C"),

col = c("grey30", "grey90", "white"),

density = c(30, 0,10),

angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")

s1 <- sinpoint(5,0,0.5,nwave = 1.5)

s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)

s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)

final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),

j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)

opar <- par()$mfrow # Save initial graphical parameters

par(mfrow = c(1,2))

plot.new()

plot.window(xlim = c(0,6), ylim = c(-1,77))

minorAxis(2, at.maj = seq(0, 75, 5), n = 5, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,

col = bed.legend$col,

density = bed.legend$density,

angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,

x = 0.75, ymin = 3)

plot.new()

plot.window(xlim = c(-2*10^-8,8*10^-8), ylim = c(-1,77))

minorAxis(4, at.maj = seq(0, 75, 5), n = 5, las = 1)

lines(proxy.example$ms, proxy.example$dt, type = "o", pch = 19)

axis(1)

title(xlab = "Magnetic Susceptibility")

par(mfrow = opar) # Restore initial graphical parameters

Any other plot(s) can be added along the litholog, using for instance the par() function.

Great care should be taken to insure that the depth axis is similar

39

Code repeated from earlier examples ----

legend <- data.frame(litho = c("S", "L", "C"),

col = c("grey30", "grey90", "white"),

density = c(30, 0, 10),

angle = c(180, 0, 45), stringsAsFactors = FALSE)

f <- function(i)

{

multigons(i = rep(1, 4), c(-1,-1,1,1), c(-1,1,1,-1),

col = legend$col[i],

density = legend$density[i],

angle = legend$angle[i])

}

opar <- par() # Save initial graphical parameters

par(mar = c(0,0,0,0), mfrow = c(5,1))

nlegend(t = "Shale")

f(1)

nlegend(t = "Limestone")

f(2)

nlegend(t = "Chert")

f(3)

nlegend(t = "Ammonite")

centresvg(example.ammonite,0,0,xfac = 0.5)

nlegend(t = "Belemnite")

centresvg(example.belemnite,0,0,xfac = 0.5)

par(mar = opar$mar, mfrow = opar$mfrow) # Restore initial graphical parameters

A legend can be created using nlegend(). Each symbol is in another plot, and is centred

on the coordinates (0,0).

40

https://orbi.uliege.be/bitstream/2268/237418/1/Poster%20STRATI%202019%20V3.pdf

 Another resource is available for StratigrapheR:

PLEASE

HELP ME,

MY CODE DOES NOT WORK

AND I AM DESPERATELY STUCK !!!!

Self-explanatory

41

PLEASE HELP ME, MY CODE DOES NOT WORK AND I AM DESPERATELY STUCK !!!!

 Starting to code in any language is difficult, and everyone rising to the
challenge will sooner or later be faced with what seems to be an
insurmountable task. On a personal level I can say without a doubt that I
wouldn’t have been able to code what I wanted to code without the help of
one of my relatives, who is a trained programmer that I can annoy with my R
problems every now and then. Seeking help is actually a full part of the job of
programmer. Thankfully there are a few resources available out there:

 Google (or any other search engine, it is basic but efficient)

 Stack Overflow https://stackoverflow.com/questions/tagged/r

 The maintainer of the package you are using

 To ask questions, is it best to provide a reprex, which stands for
“representative example”: https://community.rstudio.com/t/faq-whats-a-
reproducible-example-reprex-and-how-do-i-do-one/5219

 If you have any question on StratigrapheR, please contact the maintainer:

sebastien.wouters@doct.uliege.be

 You can post your question on Stack Overflow, and link the question to the
maintainer, so that other users can take advantage of the answer

42

