

Helmholtz Centre Potsdam **GFZ German Research Centre** for Geosciences

Exposure

> A model for residential bu height.

It is a basis o⁻ useful floor s which is then estimate exp

Standard exposure values per floor space area Household contents **Residential buildings**

Published paper: https://doi.org/10.5194/nhess-20-323-2020 Dataset: http://doi.org/10.5880/GFZ.4.4.2020.003

Commercial assets in the country by sector are disaggregated by regional gross value added and footprint area of buildings with a particular functio (based on OpenStreetMap)

Commercial exposure in SaferPlaces case studies

FLOOD EXPOSURE AND VULNERABILITY ESTIMATION METHODS FOR

RESIDENTIAL AND COMMERCIAL ASSETS IN EUROPE

Dominik Paprotny¹, Heidi Kreibich¹, Oswaldo Morales-Nápoles², Dennis Wagenaar³, Attilio Castellarin⁴, Francesca Carisi⁴, Xavier Bertin⁵, Paweł Terefenko⁶, Bruno Merz^{1,7}, and Kai Schröter¹ 1) Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences; 2) Delft University of Technology; 3) Deltares; 4) University of Bologna; 5) UMR 7266 LIENSs CNRS-La Rochelle Université; 6) University of Szczecin; 7) University of Potsdam

European Geosciences Union General Assembly 2020 | Session NH9.1 | Attendance Time: Monday, 4 May, 14:00–15:45

Vulnerability

estimating uilding of obtaining space area, n used to osure.	 A Bayesian Network (BN)-based damage disaster surveys from Germany, the Nether Separate estimates for building structure (crloss) Five predictors: water depth (wst), velociti (rp), floor space area of building (fsb), reg (NUTS2_income)
on	 A BN-based damage model based on post Germany Separate estimates for building structure equipment/machinery (erloss) Five predictors: water depth (wst), inunda precationary measures index (pre_ratio), (NUTS3_GVApc), regional GFCF per employ
7000 8000 To dings ery/Equipment	wst 0.16 pre 125±167 0.21± 0.27 0.15 erloss -0.13 0.281±0.363 0.42 brloss -0.15 0.16 -0.15

- model based on postnerlands and Italy. (brloss) and contents
- ity (v), return period gional income level

- st-disaster surveys from
- (brloss) and
- ation duration (d), regional GVA per capita oyee (NUTS2_GFCFpe)

(Germany) and Italy Compared with six alternative models.

Contact: paprotny@gfz-potsdam.de

Validated for case study of 2010 coastal flood in France (Xynthia)

Validated for three case studies of past floods in France, Saxony

Damage modeling and validation for both sectors for SaferPlaces case studies: Cologne, Pamplona & Rimini is in progress

