An early warning system for rainfall-triggered shallow slides and debris flows.

Rosa M Palau, Marc Berenguer, Marcel Hürlimann, Daniel Sempere-Torres, Catherine Berger, and Adrian Peter

(i)

BY

(cc

CRAH

General scheme Methodology

Susceptibility assessment

The susceptibility map is used to distinguish the areas that are prone to landslides.

Susceptibility input parameters can be easily found in most regions:

- Slope angle
- Land use and land cover

Both input parameters are combined using a fuzzy logic classifier.

The resulting susceptibility maps for **Catalonia and Canton of Bern** have a **resolution** of **30 m**

Rainfall hazard assessment

Rainfall data is used to asses if the rainfall conditions are able to trigger a landslide. The prototype LEWS may use both; high resolution weather radar observations and forecasts.

In the region of **Catalonia** the rainfall information has a **spatial resolution of 1 km** and is updated every **30 min**.

To asses the potential that a rainfall event has to trigger a landslide, IDF curves have been used to define four rainfall hazard levels.

(i)

Susceptibility is combined with the rainfall hazard in real time every time new rainfall infor

Susceptibility

Adapted from Palau et al. (in press) Landslides

Warning Outputs

Every 30 min	30 m resolution warning map
	Subbasin summary of the maximum 30 m warning
Daily	Subbasin 24h warning level summary

Results of the LEWS application in Catalonia

The prototype LEWS is currently running in real time using rainfall observations as input data at the university servers in Barcelona

Generally, the LEWS is able to issue warnings for the reported landslide events. However, more work needs to be done in order to further reduce the number of false positives and misses.

000

Thank you!

Find me:

Rosa M Palau Berastegui

@RosaPalauB

Centre de Recerca Aplicada en Hidrometeorologia UNIVERSITAT POLITÈCNICA DE CATALUNYA

Palau RM, M. Hürlimann, M. Berenguer, D. Sempere-Torres, 2020: Influence of the mapping unit for regional Landslide Early Warning Systems. Comparison between pixels and polygons in Catalonia (NE Spain). Landslides (In press) doi: 10.1007/s10346-020-01425-3.

