Hydrological regime and sediment transport in two Mediterranean intermittent rivers and ephemeral streams (IRESs)

Ricci G.1*, Fortesa J,^{2,3}, García-Comendador J.^{2,3}, Gentile F.¹, Estrany J.^{2,3}, Sauquet E.⁴, Datry T.⁴, De Girolamo A.M.⁵

¹Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Bari, Italy ²Mediterranean Ecogeomorphological and Hydrological Connectivity Research Team, Department of Geography, University of the Balearic Islands, Palma, Spain ³Institute of Agro-Environmental and Water Economy Research –INAGEA, University of the Balearic Islands, Palma, Spain

- ⁴ INRAE, UR RiverLy, Villeurbanne, France
- ⁵Water Research Institute, National Research Council, Bari, Italy
- *giovanni.ricci@uniba.it

Introduction

The hydrological regime strongly influences water quality, nutrient and sediment delivery in all river systems

The relevance of the flow regime has also been recognized by river ecologists, who pointed out that dynamic variability of streamflow is fundamental in sustaining the ecological integrity of the river ecosystem

The hydrological regime is the primary driving force controlling the sediment transfer from the upland to the lowland zone, therefore the river geomorphology

Aims

To analyse the hydrological regime of two IRES

To analyse the temporal variability of suspended sediment transport

Study areas

Study areas

Methods

Monitoring and data acquisition of 5 years: rainfall, discharge and suspended sediment

Data computation:

- Discharge and suspended sediment rating curves
- Runoff and sediment yields at annual, monthly and event scale
- Flow duration curves of daily runoff and sediment yield
- Event variables to identify main drivers of the hydrological response and sediment transport
- To identify sediment sources through discharge suspended sediment hysteresis patterns

Rainfall variables			Runoff variables	Sediment variables		
P _{tot}	Total precipitation (mm)	Q_{dur}	Flood duration (h)	SSC _{max}	Max. susp. sed. conc. (g l-1)	
IP _{max} 30	Max. 30' prec. intensity (mm h)	Q _{max}	Max. discharge (m ³ s ⁻¹)	SSY	Specific sediment yield (t km ⁻²)	
AP1d	Antec. Prec. 1 day before (mm)	Q_0	Discharge at time 0 (m ³ s ⁻¹)			
AP3d	Antec. Prec. 3 day before (mm)	R _c	Runoff coefficient (%)			
		R	Runoff (mm)			

Results: yields at annual scale

Búger										
Year	Rainfall (mm)	Runoff (mm)	Runoff coeficient (%)	Zero day flow	SY (t km ² yr ⁻¹)					
2013	1019.4	26.86	3	204	0.79					
2014	719.1	11.38	2	237	0.49					
2015	606.3	25.38	4	212	1.51					
2016	867.9	16.73	2	329	3.92					
2017	835.4	91.11	11	250	45.97					
2012-17	835.4	25.38	3	237	1.51					
		Car	apelle							
Year	Rainfall (mm)	Runoff (mm)	Runoff coeficient _(%)	Zero day flow	SY (t km ² yr ⁻¹)					
2007	542.0	75.0	14	0	89.31					
2008	546.0	93.5	17	54	123.70					
2009*	785.7		-							
2010	889.0	307.8	35	4	745.40					
2011	546.0	87.7	16	1	411.86					
		·								

Results: flow and sediment duration curve

Results: minimum, median and maximum monthly yields

Rainfall, runoff and sediment yield values were more distributed along the year in Carapelle than Búger

Results: daily discharge and suspended sediment concentration

Results: drivers at event scale

Bú

Cara

	Р	IP 30	$\Delta P1d$	AP3d		Ω_{a}	()	к	R	SSC	SY
D	• tot	1 0.30	0.36	0.61	0.20	-0.05	Q 18	0.37	$\frac{n_c}{0.02}$	0.32	0.14
r _{tot}		1 0.50	-0.18	-0.04	-0.51	-0.29	-0.14	-0.18	-0.35	0.02	-0.11
IP _{max} 50		1	-0.10	0.04	0.42	0.2	0.14	0.76	-0.55	0.02	0.55
APId			1	0.07	0.42	0.50	0.58	0.70	0.04	0.49	0.55
AP3d				1	0.33	0.54	0.58	0.74	0.58	0.51	0.54
Q_{dur}					1	0.01	0.01	0.29	0.20	-0.12	0.00
Q_0						1	0.82	0.80	0.96	0.65	0.78
Q _{max}							1	0.91	0.81	0.84	0.99
R								1	0.87	0.76	0.88
R _c									1	0.62	0.76
SSC _{max}										1	0.85
GM											1
51											
SY Signific	ant cor	relation a	t 0.01 le	vel							
Significa	ant cor	relation a	t 0.01 le 05 level	vel							
Signific Significa	ant cor nt corre	relation a elation at 0.	t 0.01 le 05 level	vel							
Significa	ant corre nt corre P _{tot}	relation a elation at 0. IP _{max} 30	t 0.01 le 05 level AP1d	AP3d	Q _{dur}	Q ₀	Q _{max}	R	R _c	SSC _{max}	SY
Significa Significa	ant corre nt corre P _{tot}	relation a elation at 0. IP _{max} 30 1 0.77	t 0.01 le 05 level AP1d 0.17	vel AP3d -0.11	Q _{dur}	Q ₀	Q _{max}	R 0.62	R _c	SSC _{max}	SY 0.50
SY Significa Significa P _{tot} IP _{max} 30	ant corre nt corre P _{tot}	relation a elation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36	AP3d -0.11 0.10	Q _{dur} 0.72 0.28	Q ₀ 0.10 0.24	Q _{max} 0.54 0.77	R 0.62 0.60	R _c -0.42 -0.40	SSC _{max} 0.29 0.52	SY 0.50 0.60
SY Significa Significa P _{tot} IP _{max} 30 AP1d	ant corre	relation a elation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36 1	AP3d -0.11 0.10 0.461*	Q _{dur} 0.72 0.28 -0.13	Q ₀ 0.10 0.24 0.10	Q _{max} 0.54 0.77 0.36	R 0.62 0.60 0.15	R _c -0.42 -0.40 -0.08	SSC _{max} 0.29 0.52 0.31	SY 0.50 0.60 0.19
SY Significa Significa P _{tot} IP _{max} 30 AP1d AP3d	nt corre	relation a elation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36 1	AP3d -0.11 0.10 0.461* 1	Q _{dur} 0.72 0.28 -0.13 -0.04	Q ₀ 0.10 0.24 0.10 0.28	Q _{max} 0.54 0.77 0.36 0.27	R 0.62 0.60 0.15 0.24	R _c -0.42 -0.40 -0.08 0.34	SSC _{max} 0.29 0.52 0.31 0.02	SY 0.50 0.60 0.19 0.24
SY Significa Significa P _{tot} IP _{max} 30 AP1d AP3d	nt corre P _{tot}	relation a elation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36 1	AP3d -0.11 0.10 0.461* 1	Q _{dur} 0.72 0.28 -0.13 -0.04 1	Q ₀ 0.10 0.24 0.10 0.28 0.23	Q _{max} 0.54 0.77 0.36 0.27 0.30	R 0.62 0.60 0.15 0.24 0.66	R _c -0.42 -0.40 -0.08 0.34 -0.21	SSC _{max} 0.29 0.52 0.31 0.02 -0.09	SY 0.50 0.60 0.19 0.24 0.46
SY Significa Significa P _{tot} IP _{max} 30 AP1d AP3d Q _{dur} Q _o	nt corre	relation a elation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36 1	AP3d -0.11 0.10 0.461* 1	Q _{dur} 0.72 0.28 -0.13 -0.04 1	Q ₀ 0.10 0.24 0.10 0.28 0.23 1	Q _{max} 0.54 0.77 0.36 0.27 0.30 0.46	R 0.62 0.60 0.15 0.24 0.66 0.62	R _c -0.42 -0.40 -0.08 0.34 -0.21 0.09	SSC _{max} 0.29 0.52 0.31 0.02 -0.09 0.18	SY 0.50 0.60 0.19 0.24 0.46 0.43
SY Significa Significa P _{tot} IP _{max} 30 AP1d AP3d Qdur Q0	nt corre P _{tot}	relation a elation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36 1	AP3d -0.11 0.10 0.461* 1	Q _{dur} 0.72 0.28 -0.13 -0.04 1	Q ₀ 0.10 0.24 0.10 0.28 0.23 1	Q _{max} 0.54 0.77 0.36 0.27 0.30 0.46	R 0.62 0.60 0.15 0.24 0.66 0.62 0.85	R _c -0.42 -0.40 -0.08 0.34 -0.21 0.09 -0.21	SSC _{max} 0.29 0.52 0.31 0.02 -0.09 0.18 0.49	SY 0.50 0.60 0.19 0.24 0.46 0.43 0.88
SY Signific Significa P _{tot} IP _{max} 30 AP1d AP3d Qdur Q0 Qmax P	nt corre	relation a elation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36 1	AP3d -0.11 0.10 0.461* 1	Q _{dur} 0.72 0.28 -0.13 -0.04 1	Q ₀ 0.10 0.24 0.10 0.28 0.23 1	Q _{max} 0.54 0.77 0.36 0.27 0.30 0.46 1	R 0.62 0.15 0.24 0.66 0.62 0.85	R _c -0.42 -0.40 -0.08 0.34 -0.21 0.09 -0.21 -0.15	SSC _{max} 0.29 0.52 0.31 0.02 -0.09 0.18 0.49 0.37	SY 0.50 0.60 0.19 0.24 0.46 0.43 0.88 0.91
SY Significa Significa P _{tot} IP _{max} 30 AP1d AP3d Q _{dur} Q ₀ Q _{max} R B	nt corre P _{tot}	relation a elation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36 1	AP3d -0.11 0.10 0.461* 1	Q _{dur} 0.72 0.28 -0.13 -0.04 1	Q ₀ 0.10 0.24 0.10 0.28 0.23 1	Q _{max} 0.54 0.77 0.36 0.27 0.30 0.46 1	R 0.62 0.60 0.15 0.24 0.66 0.62 0.85 1	R _c -0.42 -0.40 -0.08 0.34 -0.21 0.09 -0.21 -0.15	SSC _{max} 0.29 0.52 0.31 0.02 -0.09 0.18 0.49 0.37 -0.13	SY 0.50 0.60 0.19 0.24 0.46 0.43 0.88 0.91 -0.11
SY Signific Significa P _{tot} IP _{max} 30 AP1d AP3d Q _{dur} Q ₀ Q _{max} R R R _c	P _{tot}	relation a elation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36 1	AP3d -0.11 0.10 0.461* 1	Q _{dur} 0.72 0.28 -0.13 -0.04 1	Q ₀ 0.10 0.24 0.10 0.28 0.23 1	Q _{max} 0.54 0.77 0.36 0.27 0.30 0.46 1	R 0.62 0.15 0.24 0.66 0.62 0.85 1	R _c -0.42 -0.40 -0.08 0.34 -0.21 0.09 -0.21 -0.15 1	SSC _{max} 0.29 0.52 0.31 0.02 -0.09 0.18 0.49 0.37 -0.13	SY 0.50 0.60 0.19 0.24 0.46 0.43 0.88 0.91 -0.11 0.54
SY Signific Significa P _{tot} IP _{max} 30 AP1d AP3d Q _{dur} Q ₀ Q _{max} R R R _c SSC _{max}	nt corre P _{tot}	relation at 0. IP _{max} 30 1 0.77 1	t 0.01 le 05 level AP1d 0.17 0.36 1	AP3d -0.11 0.10 0.461* 1	Q _{dur} 0.72 0.28 -0.13 -0.04 1	Q ₀ 0.10 0.24 0.10 0.28 0.23 1	Q _{max} 0.54 0.77 0.36 0.27 0.30 0.46 1	R 0.62 0.60 0.15 0.24 0.66 0.62 0.85 1	R _c -0.42 -0.40 -0.08 0.34 -0.21 0.09 -0.21 -0.15 1	SSC _{max} 0.29 0.52 0.31 0.02 -0.09 0.18 0.49 0.37 -0.13 1	SY 0.50 0.60 0.19 0.24 0.46 0.43 0.88 0.91 -0.11 0.54

Favorable moisture conditions and not rainfall intensities who promoted major runoff and sediment load contributions

Runoff and sediment load contributions were controlled by rainfall amount and intensity

Results: hysteresis patterns

Larger sediment availability due to agricultural fields

Lithology resulted the most relevant driver controlling the hydrological regime

Runoff response can be due to different processes (i.e., saturation or infiltration excess)

Búger: SSY and SSC_{max} were correlated with the runoff, peak discharge and antecedent rainfall Carapelle: SSY and SSC_{max} were correlated to the amount and intensity of rainfall

Land use and management practices were also relevant factors in SSY, determining the availability of SS material. A large number of terraces present in the Búger catchment contribute to retaining the sediment detachment

Hysteretic loops are greatly influenced by the size, shape, lithology and land uses of the basins

