Quantifying burning efficiency using the Tropospheric Monitoring Instrument (TROPOMI)

Srijana Lama, Sander Houweling, K. Folkert Boersma, Ilse Aben Hugo A C Denier van der Gon, Maarten C. Krol, A.J.(Han) Dolman, Tobias Borsdorff, Alba Lorente

7 May, 2020 s.lama@vu.nl

Netherlands Institute for Space Research

BURNING EFFICIENCY

- Increased in burning of fossil fuel and biomass burning has severe impact on climate change
- Burning efficiency is the important parameter to quantify the effect of fuel burning on the atmosphere.
- Burning efficiency (BE) = $\frac{CO_2}{CO+CO_2}$
- Burning efficiency $\uparrow = NO_2 \uparrow$
- Burning efficiency \downarrow = CO \uparrow
- In this study , $\frac{\Delta NO_2}{\Delta CO}$ as a proxy of BE

MOTIVATION

DATA

TROPOMI

- Launched by the European Space Agency on 13 October, 2017
- Measures the atmospheric trace gases with daily coverage
- Spatial resolution of 7x7 km²
- Collocated carbon monoxide and nitrogen dioxide retrievals

EMISSION INVENTORY

- Emission Database for Global Atmospheric Inventory (EDGAR), 2012
- Monitoring Atmospheric Chemistry and Climate and CityZen (MACCITY), 2018

METHOD QUANTIFYING RATIOS: UPWIND BACKGROUND

MEXICO CITY

- Upwind Background area
- Core City area
- Wind direction

$$\Delta X = CO \text{ or } NO_2$$
$$\Delta X = X_{\text{mean city}} - X_{\text{mean upwind background}}$$

Ratio =
$$\frac{\Delta NO_2}{\Delta CO}$$

Impact of transport cancels

 $\begin{array}{l} \mbox{Ratio(emission inventories) =} \\ \frac{\sum_{i=1}^{n} NO_2 \ city}{\sum_{i=1}^{n} CO \ city} \end{array}$

METHOD QUANTIFYING RATIOS: PLUME ROTATION

The area above the centre of city is upwind and below is downwind area

• Vd =
$$\frac{\sum_{i=1}^{n \text{ downwind}} (X \ge 75^{\text{th}} \text{ percentile})}{n_{\text{ downwind}}}$$
, Vu = $\frac{\sum_{i=1}^{n \text{ upwind}} (X \le 25^{\text{th}} \text{ percentile})}{n_{\text{upwind}}}$

- $\Delta X = Vd Vu$
- Ratio = $\frac{\Delta NO2}{\Delta CO}$, for details see Pommier et al., 2013

MEXICO CITY (JUNE – AUGUST, 2018)

- The enhancements of XCO and XNO₂ over Mexico City are clearly separated from the surrounding background areas and correlate with each other.
- This confirms that it is possible to obtain useful information about burning efficiency

EMISSION INVENTORY Vs TROPOMI COLUMN ENHANCEMENT RATIO

- Upwind background and Plume rotation ratio differ by < 10 % representing the robustness of the method.
- EDGAR and MACCity emission ratio is higher by 63 % and 73% compared to TROPOMI column enhancement ratio.
- The difference between satellite-derived column enhancement ratios and inventory-based emission ratios can be explained in part by the relative short lifetime of NO₂ and the different vertical sensitivity of TROPOMI CO and NO2 retrievals

NO2 LIFETIME CORRECTION

- OH is the major component to limit the lifetime of NO2 during the noon.
- CAMS OH is spatially, temporally and vertically interpolated at the time TROPOMI overpasses.
- Clear enhancement of OH at the city correlates well with TROPOMI NO₂ enhancement
- Using CAMS OH ,TROPOMI column enhancement ratio is corrected to derive the TROPOMI emission ratio

AVERAGING KERNEL (A) INFLUENCE

- Different vertical sensitivity of TROPOMI NO₂ and CO retrievals influences $\frac{\Delta NO_2}{\Delta CC}$ Two simulations using CAMS NO₂ and CO to quantify the influence of A ΔNO_{2CAMS} Without A ΔCO_{CAMS} ΔNO_{2} new CAMS With A $\Delta CO_{new CAMS}$ Where, $NO2_{new CAMS} = NO_{2CAMS} * A_{NO2 TROPOMI}$ $= CO_{CAMS} * A_{CO TROPOMI}$ CO_{new CAMS} (Without A-with A) . 100% **A**_{influence} Without A
- A_{influence} is ~10 %

EMISSION INVENTORY Vs TROPOMI EMISSION RATIO

- NO₂ lifetime correction leads to increase the UB and PR column enhancement ratios by 65 %.
- Correcting TROPOMI derived column enhancement ratio for NO2 short life time and different vertical sensitivity of CO and NO2 improves the agreement between TROPOMI and emission inventories.

CONCLUSION

- TROPOMI is well capable of detecting XCO and XNO₂ enhancements over these megacities.
- Correcting TROPOMI derived column enhancement ratio considering the influences of NO₂ short life time and averaging kernel improves the agreement between TROPOMI and inventory derived ratios.
- TROPOMI data has potential for monitoring burning efficiency and evaluating emission inventories.
- Similar study has been extended for other cities Tehran, Cairo, Riyadh, Lahore and Los Angeles. The detailed explanation is in <u>https://www.atmos-chem-phys-discuss.net/acp-2019-1112/</u>
- For any queries, contact s.lama@vu.nl

