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What is systemic change?

• Fundamental changes in system behaviour that cannot be 
represented by a constant model structure or parameterization1

• Model parameters change, if calibrated for different periods

• Caused by e.g. land use change, climate change or new reservoirs, if 
not or only simplified incorporated in the model
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Research goals

• Detect systemic change in the Rhine-Meuse basin
• Between 1901 and 2010
• PCR-GLOBWB hydrological model
• By calibrating the model for different periods

• Describe potential causes of systemic change
• Climate change
• Land use change
• River structures

• Contribute to a better understanding of hydrological modelling under 
changing conditions
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Study area
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• Rhine-Meuse basin
• 200,000 km2

• Combined rainfall-snowmelt regime
• Long period of discharge 

measurements available

• 5 calibration locations:
• Basel, Maxau, Lobith (Rhine)
• Cochem (Moselle)
• Borgharen (Meuse)



Model: PCR-GLOBWB 2.0

• Grid-based global hydrology and water 
resources model2

• Developed by the Department of Physical 
Geography, Utrecht University, the Netherlands 

• 30 arcminutes resolution grid
• Calculates discharge at daily time steps

30 April 2020 Systemic Change in Hydrology 5

From: Bosmans et al. (2017)3



Methods: Detecting systemic change

• Calibrate PCR-GLOBWB for 1901-
2010 using 10-year rolling calibration 
periods
• Determine optimal parameter set for 

each of these periods

• Calibration parameters 
• Minimum soil depth fraction
• Saturated hydraulic conductivity
• Groundwater recession coefficient
• Degree day factor
• Manning’s n

• Spatial patterns remain constant by 
using multiplication factors
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Methods: Potential causes of systemic change

• Compare trends in optimal parameter values with
• Trends in climatic forcing data: CRU TS 3.2 data4, downscaled with ERA405 and 

ERA-Interim6

• Land use changes: HYDE 3.2 database7

• River structures: from literature

• For each of the 5 calibration locations, the upstream average values 
are calculated for different time steps, to include changes in the 
entire catchment. 
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Results of rolling calibration
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• Kling-Gupta efficiency 
(KGE):
• Higher with a rolling 

calibration than with one 
single calibration

• Minimum soil depth 
fraction:
• Upstream: decrease
• Downstream: stable

• Saturated hydraulic 
conductivity:
• Upstream: slight decrease
• Downstream: stable

Upstream Downstream



Results of rolling calibration
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• Groundwater 
recession coefficient:
• Upstream: decrease
• Downstream: very stable

• Degree day factor:
• Upstream: increase 

followed by decrease
• Downstream: stable

• Manning’s n:
• Upstream: constant at

Basel, decrease at Maxau
• Downstream: some 

variations

Upstream Downstream



Relations with Climate change

• Changes in climatic input data: upstream averages at Basel and Lobith
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Relations with Climate change
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Relations with Land use change

• Land use changes: upstream averages at Basel and Lobith
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Relations with Land use change
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Conclusions

• Systemic change has occurred in the Rhine-Meuse basin
• Optimal parameter values change when calibrated for different periods, 

especially after 1950
• The change in parameter values is larger at the upstream locations 
• The degree day factor shows the largest changes, between 0.5 and 2.5 times 

the default value

• The parameters correlate with climate variables and land use
• Correlation coefficients up to 0.64 for climate variables
• Correlation coefficients up to 0.89 for land use
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