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Introduction

Dynamical systems are often subject to forcing or changes in their governing parameters
and it is of interest to study how this affects their statistical properties. A prominent real-life
example of this class of problems is the investigation of climate response to perturbations.
In this work we address the problem of:

– Calculating the linear response of a system by analysing the unforced scenario

– Using the transfer operator approach to asses ergodic properties

– Extending the perturbation theory of Markov chains to continuous systems

– Applying such an approach in non-equilibirum and dissipative models

The Transfer Operator

Let {φt}t∈R be a dynamical system on X . The transfer operator is defined as:

Ltρ(x) = ρ
(
φ−t(x)

)
| detDφ−t(x)|.

for ρ ∈ L1
η(X ). The transfer operator describes the natural pushforward on densities. The

finite representation of the transfer operator at time dt is given by:

Mdt
i,j :=

1

η(Bj)

∫

Bj

Ldt
1Bi

η(dx),

where {Bi}
N
i=1 is a colection of boxes covering phase-space. Mdt defines a finite Markov

chain.

Figure 1: Example of box covering using the Lorenz 63 convection model. The eigenvector
associated with the largest eigenvalue of Mdt gives us an estimate of the invariant measure

of the system (left). The eigenvector paired with the second largest eigenvalue helps us to
detect almost-invariant sets on phase-space (right).

Response Formulas for Finite Markov Chains

Consider multiparametric perturbations of Markov matrices:

M −→ M + ǫ1m1 + . . . + ǫnmn, (1)

with invariant measures u and v solving

Mu = u & (M + ǫ1m1 + . . . + ǫnmn)v = v.

We can show that

v(ǫ1, . . . , ǫn) = u +

∞∑

k=1

(ǫ1Ψ1 + . . . + ǫnΨn)
k
u (2)

Where Ψk = (1−M)−1mk is the linear response operator. This expression allows us to
predict the perturbed invariant measure and isolate the components of the response.

Remark. The validity of this formula relies on the rate of mixing of the Markov
chain M, determined by its spectral properties.
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Figure 2: Spectrum σ (M) (dots) and ǫ-
psedospectra σǫ(M) (coloured lines for ǫ =
10−3, . . . , 10−8) of the Lorenz 63 model.
Where,

σǫ(M) = {σ (M + E) : ‖E‖ ≤ ǫ}.

•The spectral gap, 1− |λ2|, determines the
rate of mixing.

• Large ǫ-pseudospectra indicate high
sensitivity to perturbations.

A Case Study: the Lorenz 63 system

We consider the perturbed Lorenz 63 system:

ẋ(t) = F(x) + ǫG (x) =







s(y − x)

x(r + ǫ− z)− y

xy − bz

,

with s = 10, b = 8/3, r = 28 and ǫ ∈ R. Question:

Can we predict the statistics for different ǫ by only integrating the system when ǫ = 0?

The associated Liouville equation describes the infinitesimal “pushforward” of measures ρ:

∂tL
tρ0(x) = ∂tρ(x, t) = −∇ · (Fρ(x, t))

︸ ︷︷ ︸
Unperturbed component

−ǫ∇ · (Gρ(x, t))
︸ ︷︷ ︸
Perturbation operator

.

Differencing the left-hand side with time-step dt > 0, we can approximate to first-order:

•Unperturbed component ≈ Mdt, using time-series {xk}
T
k=1 for ǫ = 0

•Perturbation operators ≈ m, using finite-volume methods

Mdt
i,j =

#{(xk ∈ Bj) ∧ (xk+1 ∈ Bi)}

#{xk ∈ Bj}
& m ≈ −dt∇ · (G◦)

=⇒ We will apply the pertubation problem as in Eq. (1).

Numerical Experiments
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ǫ = 0.1 〈z〉
〈
z2
〉

〈z〉ǫ
〈
z2
〉

ǫ
Ψ[z] Ψ[z2]

L63 23.54 628.78 23.65 633.90 1.01 50.31

N = 212 23.55 629.75 23.62 633.98 0.89 42.39

N = 215 23.55 629.55 23.66 634.32 1.08 50.27

N = 218 23.55 629.22 23.65 634.30 1.11 50.80

Figure 3: Discrete derivativemu on the attractor (top-left). Expectation value of the observable
z calculated using the perturbative expansion Eq. (2) (top-right). The table shows statistical
quantities computed using Eq. (2), including the linear response. N indicates the number of
boxes employed in the experiment.

Comments and Future Work

•The transfer operator naturally links the response theory of finite Markov chains with con-

tinuous time dynamical systems:

– the spectral gap is necessary to apply Eq. (2) in any sense

– the response of a fractal attractor can be calculated by observing the unforced system

•Real-world models posses a large number of degrees of freedom. For such reason, phase-space
is projected onto variables of interest, forcing a loss of the Markov property. To what
extent can these techniques be applied?
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