Reconstructions of past sediment and water discharges from fluvial-fill terraces in the southern Central Andes of NW Argentina °@ﬁ@
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Introduction Past sediment and water discharge
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Alluvial river long profiles continually adjust .to their wate.r discharge (QW) Past erosion rate (
and sediment supply (Q ). Q and Q_are in turn functions of local cli- ~
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channel incision can form alluvial terrace sequences (Fig. 2). Because Past sediment supply (Q.) = f\ / \ \ <) y = 1.58 x +0.51*10° Sl 1 SGiﬁ
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terrace surfaces are abandoned floodplains that preserve ancient river 5 o 0 E 5 5 < 0.001 8o
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gl Water discharge (Q,) S - KX , %ﬁ — Fig. 6 Past water discharge. (a) Calibration of the relationship between Q_and the ratio of Q_over S
S S é <O —=C— with modern data from figure 4 (grey circles). Red curves show 1000 linear regressions to a random
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LLJ w | | curve. (b) Past water discharge at times of terrace formation (onset of incision) is between 12 and 86
L i T, . .. Fig. 5 Past erosion rates derived from "°Be concentrations in dated ter- 70 higher compared to modern water discharge.
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: —— , — , _ _ ; Fig. 3 Sampling location of terrace sediments to derive past sion rates (orange). (a) Data from the entire Toro Basin and (b) close Qs: Erosion rates over the past ~500 ka varied by a factor of ~2, but
Fig. 1 Longitudinal river profile of alluvial rivers. (a) The river slope is a function of upstream sediment erosion rates from cosmogenic °Be. Person for scale. up of low erosion rate samples only. Red and blue arrows indicate

supply (Q ) and water discharge (Q,). (b) Changes in Q  or Q_can trigger river incision and slope ad- were fairly constant compred to the modern spread in erosion rates

times of river aggradation and incision after Tofelde et al. (2017). T1 to

Justments. Past water discharge (Q) T5 are the individual terraces. (Fig. 5).
. Q : Higher discharge during terrace formation (onset of incision) com-
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What can we learn about past environmental conditions w”™ e ] S//6 “OO v :
from alluvial terraces? s | | o 4 Q 1 Conclusion
Following equation 1 of Wickert Wl g
and Schildgen (2019), water ” Q 0 ~1002 20 100 150 200 250 300 Past Q reconstrcutions from terra-
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Fig. 2 Study location. (a) Topographic map of South America with the Toro Basin located within the : : : A1 24 | i 100 -
Eastern Cordillera of the southern Central Andes. (b) Photo of the alluvial terrace sequence preser- al., 2018, Flg' 4) for a calibration. Modern erosion rate (mm/yr) e i i 50 (Flg- 7)- However, Compared to
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The Toro Basin is an intermontane basin located within the Eastern Cor- ratlcinsh N telrtga;:e setdlments ar‘f”d 003-012 [ >1.00 0 50 00~ 50 200 250 300 lake deposits), alluvial terraces are
dillera of the southern Central Andes. In the center of the Toro Basin sits pas f an[?]e _rt%mtherrac?bsut ac] Fig. 4 Moder erosion fa(tgj from which b o 9e (ka) » SR e older and, thus, have the potential to
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a several hundred meter thick fluvial fill terrace sequence. The terraces J mated, and modern water discharge (Q ). Andes. (a) CaCO, concentration in Lake Titicaca (Fritz et al., 2007). (b) Benthic oxygen isotope values for Atlantic and expand the enwronmentgl pecords
model can be used to reconstruct (@) Lat: y9 P
have been dated and began to form ca. 500 ka (Tofelde et al., 2017). Pacific (Lisiecki & Raymo, 2009). (c) Differences in precipitation (P) or discharge between the past and today for locations ~ Of the Andes further back in time.
past QW_ throughout the Andes as indicated in d.
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