## Probabilistic reanalysis of storm surge extremes in Europe

Francisco M. Calafat (NOC, Liverpool, UK) Marta Marcos (IMEDEA, Spain)





EGU 2020, Online | 4-8 May 2020



## **Practical motivation**

- The impacts of sea-level rise will be largely felt through changes in extremes.
- Floods resulting from extreme sea levels are among the costliest and deadliest natural hazards.
- Numerical models project dramatic changes in sea-level extremes by the end of the 21st century.

### How can the risks be managed?

Cost-effective risk mitigation strategies: balance expected damage with protection costs.

### What is needed?

Knowledge of extreme event probabilities and their changes with time.

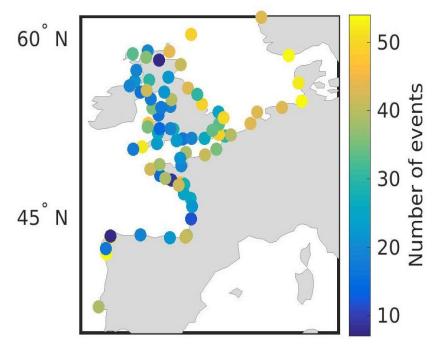


## How do we estimate event probabilities?

Event probabilities are unobservable quantities that need to be inferred indirectly from sea-level measurements.

### **Extreme value theory (EVT)**

- the distribution of extremes is always in the **same family**, regardless of the distribution of the overall data.
- EVT is analogous to the central limit theorem for means, but it does not guarantee convergence.
- Block maxima (e.g., annual maxima) can only converge to the GEV distribution.
- To estimate event probabilities we need to determine the specific distribution within the GEV family, which involves estimating the GEV parameters (location, scale, shape).

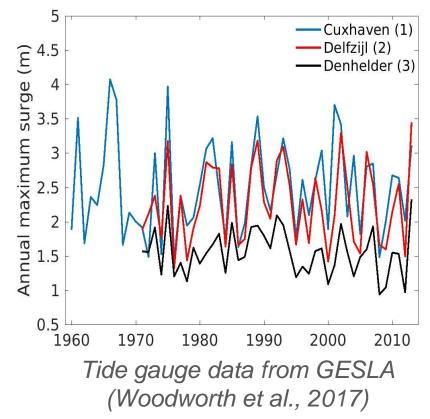



## Challenges in applying classical EVT

In sea-level research, EVT has primarily been applied on a **site-by-site** basis, namely by fitting a GEV separately at each tide gauge site. The **challenges** with this approach are:

- Number of events in the tide gauge record is small
  *large estimation*
  - ⇒ uncertainty
- Tide gauge record is sparse in space
  - No estimates at many ungauged locations

Location of tide gauges and number of annual maxima for 1960-2013




### **Extremes are spatial**

Extreme values and their probabilities tend to be similar among neighbouring locations and regions. There are two types of **spatial dependence**:

- 1. Locations with correlated annual maxima
  - → They are affected by the same events

We capture this dependence using a **max-stable process** (the infinite-dimensional generalization of a GEV)



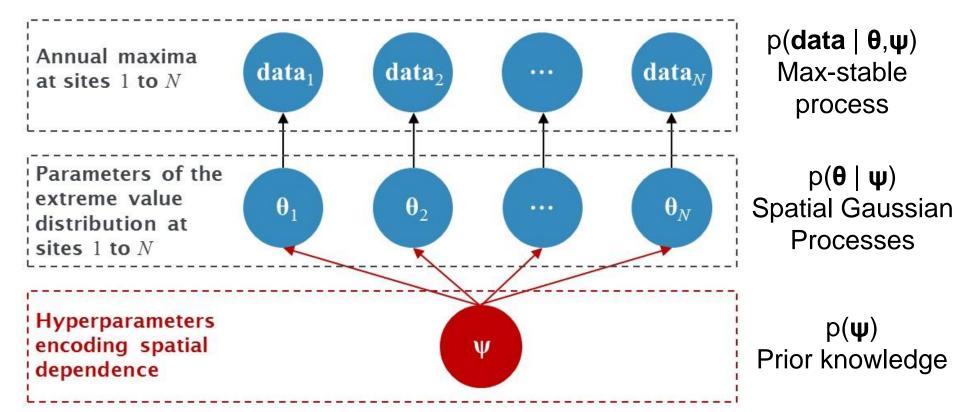
Annual maxima at 3 tide gauge sites

### **Extremes are spatial**

The second type of spatial dependence is called **climatological dependence** since it is related to event probabilities:

- 2. Locations with correlated  $GEV(\mu,\sigma,\xi)$  parameters
  - They have similar event probabilities

We capture this type of dependence using **Gaussian processes** 


Maximum surge over 1960-2013 <sup>60°</sup> N <sup>45°</sup> N <sup>11.5</sup> <sup>10</sup> <sup>10</sup>

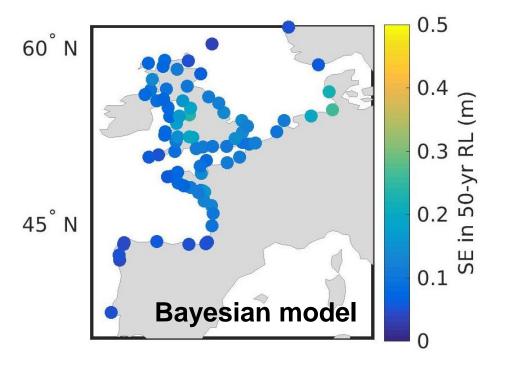
Model data from Muis et al. (2016)

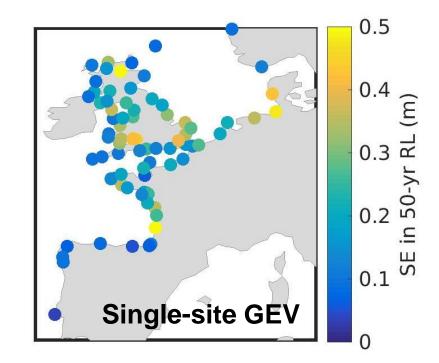
CC I

## Approach: Bayesian hierarchical model

# **Aim:** exploit spatial dependence to enable sharing of information across tide gauge sites




In our model,  $\boldsymbol{\theta}_i$  learns not only from data at the *i*-th site but from data at all other sites through the hyperparemeters  $\boldsymbol{\psi}$ 


Ŧ

### Advantages of spatiotemporal modeling

### **Advantage 1: reduction in estimation uncertainty**

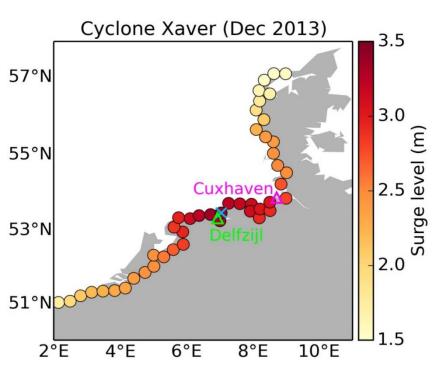
Standard errors in estimates of 50-yr return levels at tide gauge locations



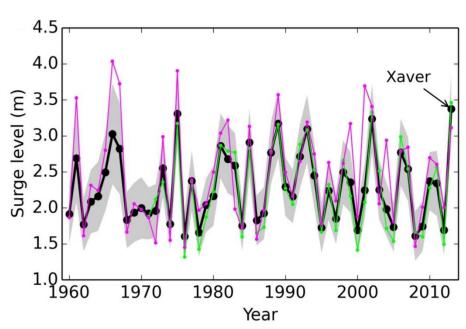




## Advantages of spatiotemporal modeling


### **Advantage 2: interpolation of event probabilities**

50-yr return levels and SE's as estimated by the Bayesian model 60°N 0 50°N 4.5 0.4 3.5 0 2.5 R 0.740°N 05 10°E 10°E10°W 0° 10°W 0°




## Advantages of spatiotemporal modeling

### **Advantage 3: interpolation of annual maxima**



Estimated surge levels induced by cyclone Xaver in December 2013



Estimated annual maxima (black) compared with observed values at Delfzijl and Cuxhaven (green and magenta)

### References

Published article: Calafat, F. M., M. Marcos (2020). Probabilistic reanalysis of storm surge extremes in Europe, *Proc. Natl. Acad. Sci. U. S. A.*, 117 (4), 1877-1883.

The probabilistic reanalysis of storm surge extremes has been deposited in Zenodo: https://doi.org/10.5281/zenodo.3471600

The code for the Bayesian hierarchical model is also available from Zenodo: https://doi.org/10.5281/zenodo.3442167

#### Acknowledgement

This work was supported by the UK Natural Environment Research Council National Capability funding and by the European Research Area for Climate Services Integrating Sea-level Projections in Climate Services for Coastal Adaptation project.

