WATER INFORMATICS
SCIENCE \& ENGINEERING

## A practical, objective, robust technique to directly estimate time of concentration

Giulia Giani, Miguel Rico-Ramirez, Ross Woods
Department of Civil Engineering, University of Bristol, UK Contact: giulia.giani@bristol.ac.uk

## Classes of available methods to estimate time of concentration



## Direct methods

Estimate of time of concentration as time difference of hyetograph and hydrograph features


## Velocity method

Estimate of time of concentration from the flow velocity in the river network


Empirical formulae
Estimate of time of concentration as regression of catchments' descriptors

## Issues with the available classes of methods



Direct methods

- Selection of representative number and kind of events
- Separation of hyetograph and hydrograph are highly subjective


Velocity method

- Velocity is estimated only in the principal river network
- It doesn't take into account water storage
- Subjective choice of flow velocity formula



## Empirical formulae

- For calibration they rely on Tc estimates from the other methods
- Their applicability is highly uncertain outside the calibration sites



## What's the proposed solution?

## Detrending Moving-average Cross-correlation Analysis (DMCA) based methodology*

## Timeseries analysis technique: it requires only rainfall and streamflow records

No need to select rainfall-streamflow events

No assumption about rainfall-runoff transformation


Parameter free

ImII Fully objective and reproducible

Note: for the comparison with the Direct method which can be applied only on an event basis, we have applied the DMCA-based method to timeseries made by copies of the same event repeated multiple times.

The time scale produced by the DMCA-based method can be considered a reliable estimate of Time of concentration as intended by the traditional method

## DMCA-based method vs Direct method in 79 catchments in the UK




## Additional information on DMCA-based method (Answering comment by Björn Guse, 03 May 2020 )



## Original signals

# Integrated signals (solid lines) and moving averages with $L=151$ on integrated signals (dash lines) 

## Fluctuations of the integrated signals compared to their moving averages

*bivariate fluctuations: product of rainfall and streamflow fluctuations

(C)2020 Giani. All rights reserved


