WATER INFORMATICS SCIENCE & ENGINEERING EPSRC CENTRE FOR DOCTORAL TRAINING

WISE CDT is supported by EPSRC grant EP/L016214/1.

A practical, objective, robust technique to directly estimate time of concentration

Giulia Giani, Miguel Rico-Ramirez, Ross Woods Department of Civil Engineering, University of Bristol, UK Contact: giulia.giani@bristol.ac.uk

Classes of available methods to estimate time of concentration

Direct methods

Estimate of time of concentration as time difference of hyetograph and hydrograph features

Velocity method

Estimate of time of concentration from the flow velocity in the river network

Empirical formulae

Estimate of time of concentration as regression of catchments' descriptors

For the same catchment time of concentration estimates can differ by up to 500%!*

Issues with the available classes of methods

Direct methods

- Selection of representative number and kind of events
- Separation of hyetograph and hydrograph are highly subjective

Velocity method

- Velocity is estimated only in the principal river network
- It doesn't take into account water storage
- Subjective choice of flow velocity formula

Empirical formulae

- For calibration they rely on Tc estimates from the other methods
- Their applicability is highly uncertain outside the calibration

What's the proposed solution?

Detrending Moving-average Cross-correlation Analysis (DMCA) based methodology*

Timeseries analysis technique: it requires only rainfall and streamflow records

No need to select rainfall-streamflow events

No assumption about rainfall-runoff transformation

Parameter free

Fully objective and reproducible

^{*} transferred from field of Economics, Kristoufek, Physic A, 2014

which can be applied only on an event basis, we have applied the DMCA-based method to timeseries made by copies of the same event

> The time scale produced by the DMCA-based method can be considered a reliable estimate of Time of concentration as intended by the traditional method

DMCA-based method vs Direct method in 79 catchments in the UK

Tc DMCA-based – median and 25th -75th [hours]

DMCA is intended for application to the entire time series, but can also be applied to individual events

DMCA-based method is able to produce reliable estimates of Time of concentration without selecting rainfall-streamflow events

Additional information on DMCA-based method (Answering comment by Björn Guse, 03 May 2020)

Original signals

Integrated signals (solid lines) and moving averages with L=151 on integrated signals (dash lines)

Fluctuations of the integrated signals compared to their moving averages

*bivariate fluctuations: product of rainfall and streamflow fluctuations

