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Why Use Molecular Biological Data for
Modelling?
• It provides quantitative information about microbial

� abundance,
� activity, and
� metabolic function.

• More and more data is available and could improve
our understanding of nitrogen cycling. However,
predicting environmental turnover requires
quantitative understanding of reaction rates.

� We need to develop models that link molecular
biological data to turnover rates.
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• Simulating batch experiments inoculated with
Paracoccus denitrificans, oxidizing succinic acid
coupled to aerobic respiration and denitrification.[1]

• Bayesian approach (Sequential Monte Carlo) for
parameter estimation and uncertainty quantification.
[2, 3]

• We compare our transcript-enzyme based model
with a standard Monod type formulation and test
potential simplifications.

Enzyme Based Simulation vs. Monod Model
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The figure shows 50 draws from the posterior of the enzyme based model (all panels) and the posterior
median of the Monod type model (upper two panels).

• Nitrogen species, oxygen and cell densities (upper panels) are
simulated accurately by both, the transcript-enzyme and Monod model
formulations.

• The timing of the dynamics of gene expression are captured, however,
with larger uncertainty.

• Posterior enzyme concentrations exhibit a wide spread but the
maximum rate of NIR (enzyme concentration × enzyme efficiency) is
well determined.

Transcript-Rate-Relationship

0 1 2 3
mRNA concentration

 [transcripts/cell]
1e 5

0

2

4

6

8

tu
rn

ov
er

 r
at

e 
[m

ol
/c

el
l/s

]

1e 19 gene = nar

10 draws
from the
posterior

0 1 2 3
mRNA concentration

 [transcripts/cell]
1e 5

0

2

4

6

8

1e 20 gene = nir

0

20

40

60

tim
e 

[h
]

Strong hysteresis between
transcript concentrations
and reaction rates implies
that transcript
concentrations cannot be
used as a proxy for rates in a
simplified model.

Quasi-Steady State Assumption
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• Fully transient mRNA concentrations match the
quasi-steady state concentrations very well.

• Enzyme concentrations deviate significantly from
the quasi-steady state concentrations with a strong
hysteretic behaviour: Quasi-steady state is not a
valid assumption for enzymes.

Conclusions
� Modelling gene expression dynamics allows for
quantitative predictions about transcript
concentrations, but does not improve rate
predictions.

� The process based rate formulation cannot be
replaced with a direct relationship to transcript
concentrations under the experimental conditions.
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