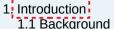


Inconsistencies in the **estimation of land surface temperature** from longwave radiation measurements

Gitanjali Thakur, Stan Schymanski, Kaniska Mallick, Ivonne Trebs, Mauro Suils Luxembourg Institute of Science and Technology


	INTRODUCTION	METHODOLOGY	RESULTS		
	Background	LST: General approach	Estimated LST		
	Research Questions	Optimized: Emissivity, LST	LSTs bias		CONCLUSIONS
		Optimized. Emissivity, EST	Optimized emissivity		
	Study sites		Reduced bias	/	Next
)	Supported by the Luvernhours			1054000	Luxembourg Nationa

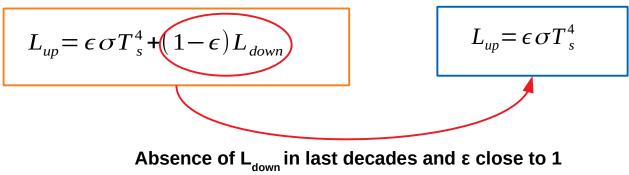
LAND SURFACE TEMPERATURE (LST):

• LST is defined as the 'ensemble directional radiometric surface temperature' (Norman and Becker, 1995)

- LST is an important state variable in land atmosphere process.
 - It controls the energy and water exchange between the Earth's surface and the atmosphere.

- It is widely used to estimate evapo-transpiration and vegetation water stress through surface energy balance models.

- 1.2 Objective
- 1.3 Study sites
- 2. Objective 1 2.1 Results
- 2.2 Validation 3. Objective 2
 - 3.1 Holmes approach
 - 3.2 Results
 - 3.3 Validation
- 4. Conclusions


LST ESTIMATION:

- The longwave measured using airborne radiance or tower mounted radiometers such as Eddy co-variance tower, is used with emissivity (known/assumed) to estimate LST (T_s).
- The longwave balance and Stephan-Boltzmann law leads to complete equation (leq), which is solved to estimate LST.

Complete equation (leq)

Previous Home Next

1. Introduction

2. Objective 1 2.1 Results

2.2 Validation 3. Objective 2

> 3.2 Results 3.3 Validation

4. Conclusions

3.1 Holmes approach

1.1 Background 1.2 Objective 1.3 Study sites

where, L_{up} is the up-welling longwave, L_{down} is the down-welling longwave, σ is the Stephan-Boltzmann constant and ε is the surface emissivity.

LST ESTIMATION: @ LARGE AND PLOT SCALE

Large scale (remote sensing):

- Radiance measured on daily basis is used to estimate LST, such as MODIS (Moderate Resolution Imaging Spectroradiometer)
 - Remotely sensed LST values are widely used at regional and global scale.

Plot scale:

1. Introduction 1.1 Background

1.2 Objective

2.1 Results 2.2 Validation

3.2 Results

3.3 Validation 4. Conclusions

3. Objective 2

Previous

Home

1.3 Study sites 2. Objective 1

3.1 Holmes approach

Next

- At plot scale both *leq* and *seq* are used to estimate LST with measured longwave and known emissivity.
- Mostly simplified equation is used for LST estimation, arguing MODIS emissivity is close to 1.

Fig. 1 (a): Airborne radiometers^[1]

Fig. 1 (b): EC Tower at Adelaide river^[2]

LST ESTIMATION @ PLOT SCALE:

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

1. Introduction 1.1 Background 1.2 Objective

1.3 Study sites

2. Objective 1 2.1 Results 2.2 Validation

3. Objective 2

3.1 Holmes approach

3.2 Results

3.3 Validation

4. Conclusions

Research Question 1. How the use of complete (leq) and simplified (seq) equation interchangeably @ plot scale leads to bias in LST estimation?

Research Question 2. How can we obtain emissivity @ plot scale for LST estimation?

• Seven sites^[3] having good record of Eddy-covariance data, with different land cover types are selected across Australia for the analysis.

Table 1: Study sites for the analysis

STUDY SITES:

Site Name	Land Cover types			
Adelaide River	Savanna dominated by Eucalyptus			
Alice Spring	Mulga Canopy			
Howard Spring	Woodland Savanna			
Litchfield	Tropical Savanna			
Sturt Plains	Grassland (Mitchell grass)			
Ti Tree East	Grassy mulga woodland & Triodia savanna			
Tumbarumba	Wet Sclerophyll forest			

Fig. 2: Map showing site locations

1. Introduction 1.1 Background

1.2 Objective

1.3 Study sites

2. Objective 1

2.1 Results

2.2 Validation

3. Objective 2

3.1 Holmes approach

Next

3.2 Results

3.3 Validation

4. Conclusions

6

Previous

Home

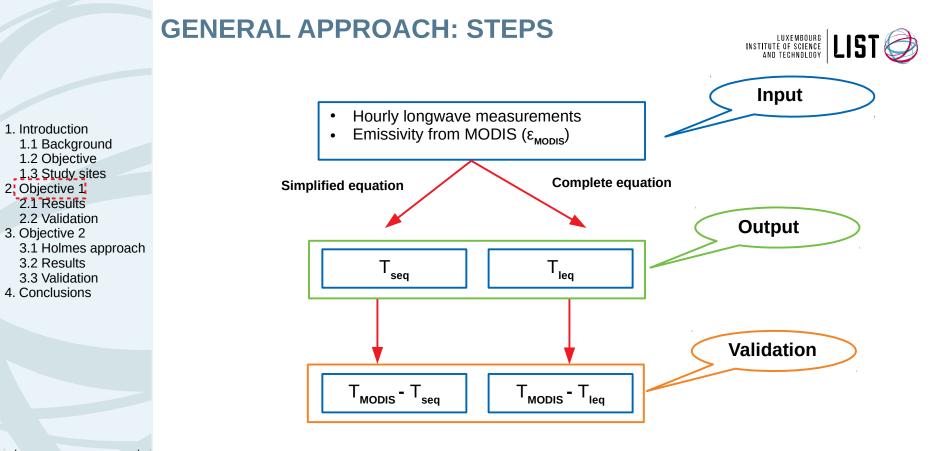
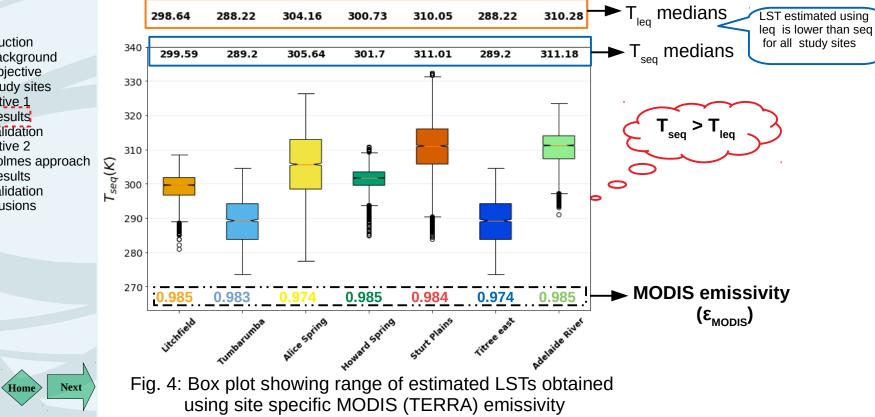


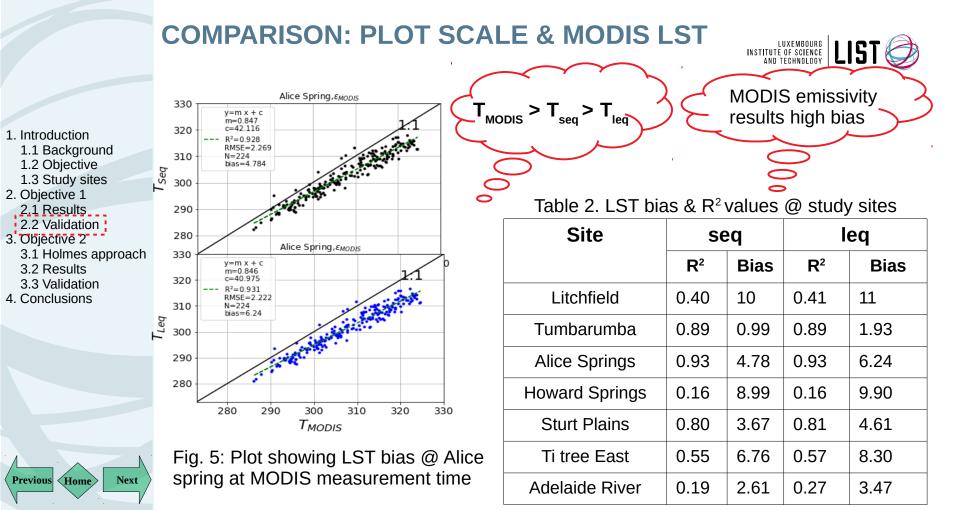
Fig. 3: Schematic showing the common approach followed for LST estimation and validation @ plot scale

Previous

Home


Next

ESTIMATED LST: MODIS EMISSIVITY



1. Introduction 1.1 Background 1.2 Objective 1.3 Study sites 2. Objective 1 2.1 Results 2.2 Validation 3. Objective 2 3.1 Holmes approach

- 3.2 Results 3.3 Validation
- 4. Conclusions

Previous

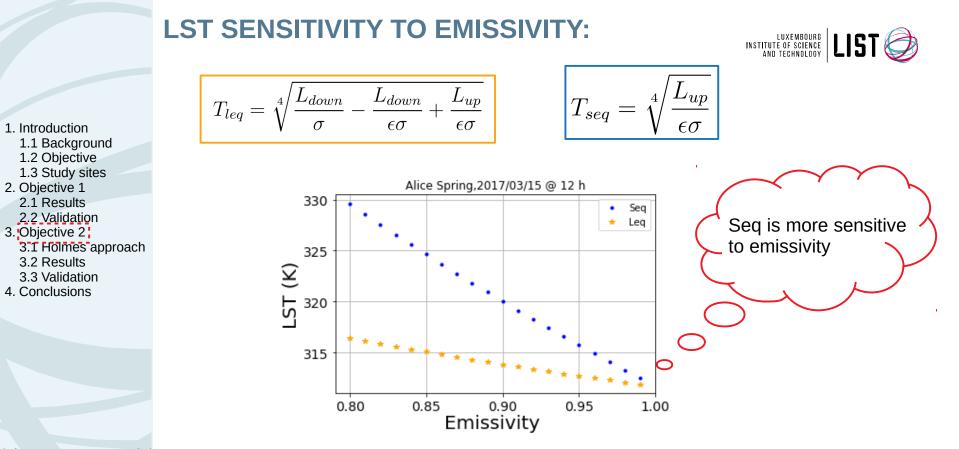


Fig. 6: Plot showing sensitivity of estimated LST to emissivity range (0.8 to 1) using *seq* and *leq* @ Alice Spring

Previous

Home

Next

OPTIMIZED EMISSIVITY & LST ESTIMATION:

Theory

Sensible heat is driven by surfaceair temperature difference

 $H \!=\! C \Delta T$

H = 0 when $\Delta T = 0$

Regression line of H vs ΔT goes through 0 if LST estimates are correct

Step 1: Assume range of ε values (0.99 to 0.4)

Step 2: Calculate LST (T) for each value of emissivity

Step 3: Plot sensible heat (H) vs (T_s - T_a), fit regression forced through origin and compute R² and root mean square error (RMSE)

Step 4: Calculate RMSE, R² values for each emissivity.

Step 5: If $\mathbb{R}^2 > 0.5$, choose emissivity value resulting in lowest RMSE

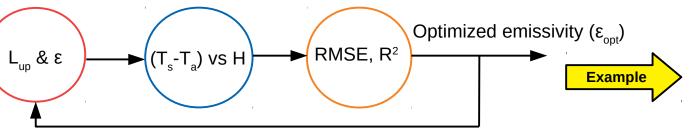


Fig. 7: Work flow for calculation of optimum emissivity (ϵ_{opt})

2. Objective 1

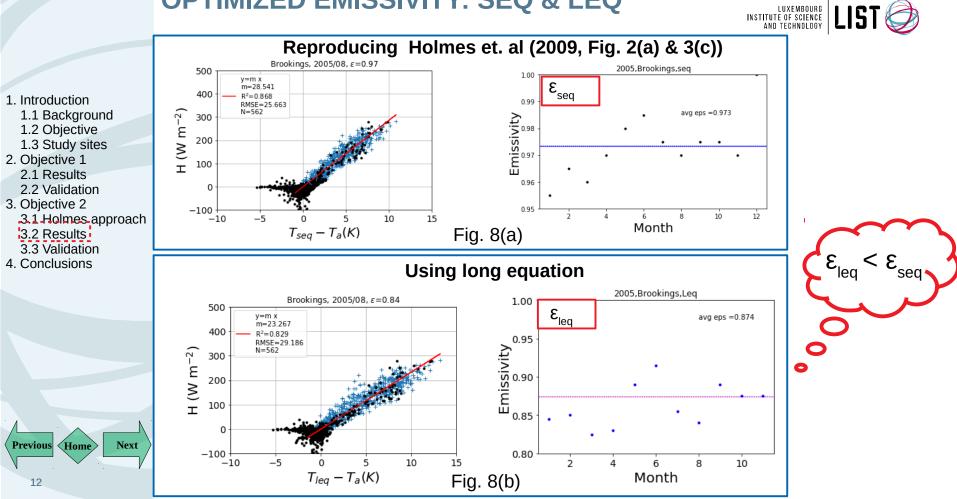
3. Objective 2

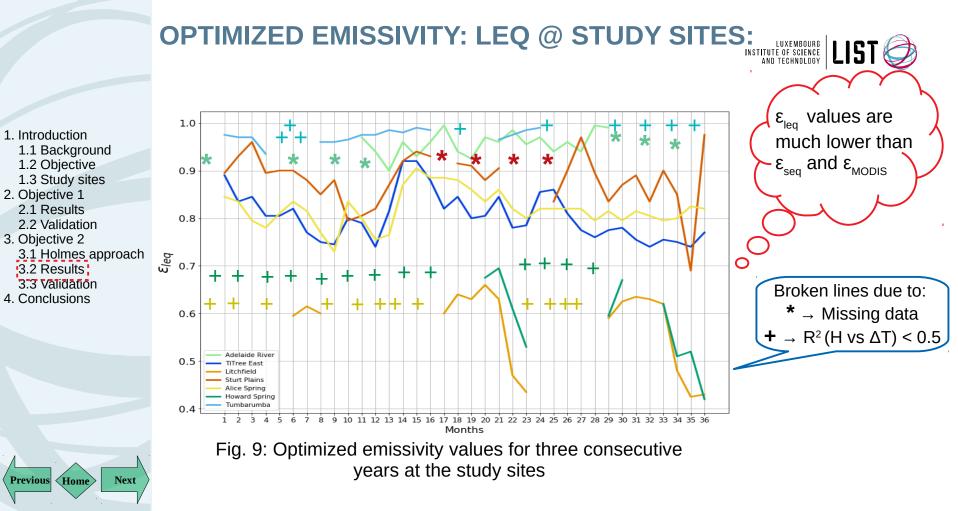
2.1 Results 2.2 Validation

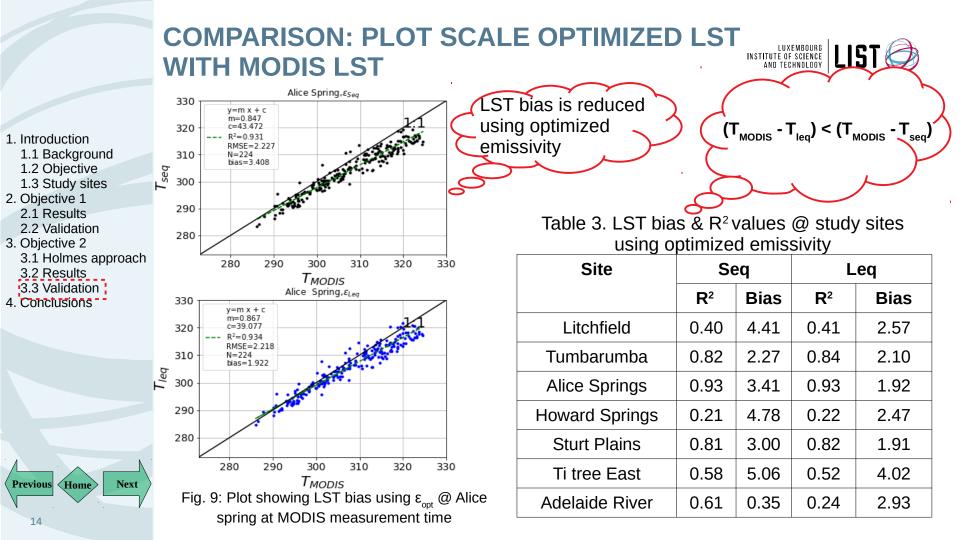
3.2 Results

4. Conclusions

Previous


Home


3.3 Validation


3.1 Holmes approach

Next

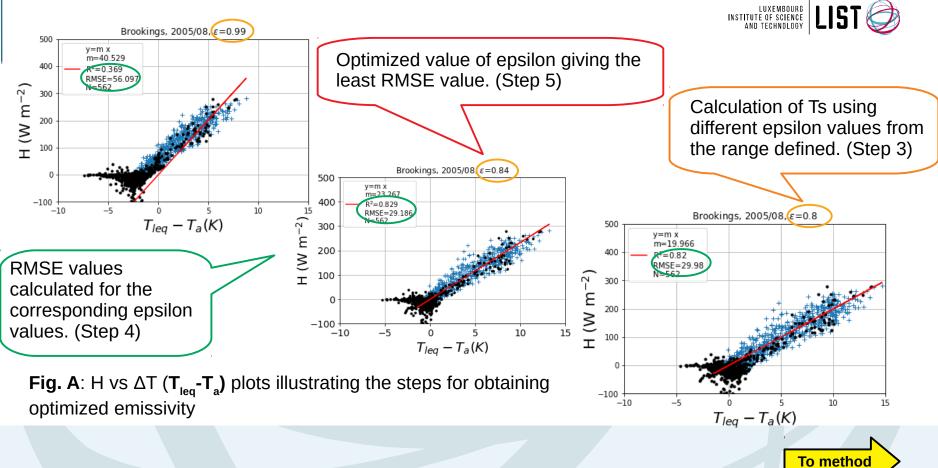
OPTIMIZED EMISSIVITY: SEQ & LEQ

CONCLUSIONS:

- 1. Introduction
- 1.1 Background
- 1.2 Objective
- 1.3 Study sites
- 2. Objective 1 2.1 Results
- 2.2 Validation3. Objective 23.1 Holmes approach
- 3.2 Results 3.3 Validation 4. Conclusions

- Plot-scale land surface temperature (LST) derived using MODIS emissivity is generally lower than MODIS LST Results
- Short equation produces different results to long equation and therefore should not be used Results
- Long equation is less sensitive to emissivity, therefore bias cannot easily be "corrected" by small changes in emissivity
 - \rightarrow bigger LST bias compared to MODIS **Results**
 - → lower optimized emissivity Results
- Reduction in H vs DT bias leads to better match with LST from MODIS Results

REFERENCES:


1) Norman, J. M., & Becker, F. (1995). Terminology in thermal infrared remote sensing of natural surfaces. Agricultural and Forest Meteorology, 77(3-4), 153-166.

2) Holmes, T. R. H., De Jeu, R. A. M., Owe, M., & Dolman, A. J. (2009). Land surface temperature from Ka band (37 GHz) passive microwave observations. Journal of Geophysical Research: Atmospheres, 114(D4)

ACKNOWLEDGMENTS:

We would like to thank Dr. Maik Renner for pointing out to Holmes work. We are also grateful to Prof.Thomas Foken, Prof.Jason Beringer, and, Prof Lindsay Hutley for insightful discussions.

EXAMPLE ESTIMATION OF EMISSIVITY

