On the droplet spectral broadening numerics

Michael Olesik, Piotr Bartman, Sylwester Arabas

Jagiellonian University, Kraków, Poland

in collaboration with:

Gustavo Abade (uw.edu.pl)
Manuel Baumgartner (uni-mainz.de)
Simon Unterstrasser (dlr.de)

EGU Sharing Geoscience Online, May 4th, 2020

background

- **>** super-droplet vs. bin μ -physics
- spectral broadening numerics:
 - bin (Eulerian-in-size):
 - -numerical diffusion
 - -no activation-related attr.
 - SD (Lagrangian-in-size):
 - -spectral sampling issues
 - -stiff equations (activation)
 - general:
 - -incorporation of fluctuations

background

- super-droplet vs. bin μ -physics
- spectral broadening numerics:
 - bin (Eulerian-in-size):
 - -numerical diffusion
 - -no activation-related attr.
 - ► SD (Lagrangian-in-size):
 - -spectral sampling issues
 - -stiff equations (activation)
 - general:
 - -incorporation of fluctuations
- trigger and focus for today: Morrison et al. 2018 (bin condensation using MPDATA vs. Lagrangian numerics)

Fig. 7. Drop size distributions at various heights z from the Lagrangian microphysical benchmark (black) and the bin model simulations (colored lines) for the parcel test with a bulk drop number mixing ratio of 50 mg⁻¹. Different colored lines illustrate results using different bin mass grid configurations and growth methods, as listed in Table 1.

MPDATA & MPyDATA

https://github.com/atmos-cloud-sim-uj/MPyDATA

$$\partial_t(Gn_p) + \partial_x(\dot{x}Gn_p) = 0, \quad G(r) \equiv \det(Dp(r)/Dx(r)) = \frac{dp}{dx}$$

mass doubling grid: $p = \log_2(r^3)$, and surface-proportional coordinate: $x = r^2$

Lessons learned and prospects

- three-pass infinite gauge variant of MPDATA is a game-changer here
- proper handling of spectrum coordinate and grid layout matters
- next steps:
 - convergence analysis with different error measures
 - Lagrangian test case: ripening & fluctuations (PySDM)

Thank you for your attention!

To reproduce above plot (in the cloud) click in the link: https://github.com/atmos-cloud-sim-uj/MPyDATA

MPyDATA ships with several demos that reproduce results from the literature, including:

- Arabas & Farhat 2020 Figs 1-3 & Tab. 1 Slaunch binder (1D advection-diffusion example based on Black-Scholes equation)
- Molenkamp test (as in Jaruga et al. 2015, Fig. 12) launch binder
 (2D solid-body rotation test)