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Data assimilation experiment

• Assimilate Sea sruface temperature (SST)
• Comparison between WCDA and SCDA: state vector

• WCDA: only the ocean variables 
• SCDA: both the ocean and the atmosphere variables

• DA method: Ensemble Kalman Filter (LESTKF)
• Ensemble size: 46
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2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green

fluxes

ocean/ice state

759ECHAM6–FESOM: model formulation and mean climate

1 3

2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green

OASIS3-MCT



DA impact on the atmosphere
2m temperature deviations between model simulation and ECMWF reanalysis 

Free_run WCDA

Difference between SCDA and WCDA



Weakly and strongly coupled data assimilation 
with the coupled ocean-atmosphere model AWI-CM

Qi Tang, Longjiang Mu, Dmitry Sidorenko, Lars Nerger
Alfred-Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany. Contact: qi.tang@awi.de

Overview Observations

Data assimilation (DA)

Model predictions Observations

The Ocean-Atmosphere model

Weakly coupled Strongly coupled
• DA for ocean
• DA for atmosphere
• No cross-covariance

• Joint DA for ocean
and atmosphere

• Cross-covariance

AWI-CM Model Setup
• Model resolution: 20-160 km for FESOM and T63L47 for ECHAM6 
• Time step: 900s for FESOM, 400s for ECHAM6, coupling interval 1 hour

Data assimilation experiments
• Initial state and exchange fluxes: from long-term historical run
• Observation error: 0.8 oC for temperature and 0.5 psu for salinity
• Localization radius: 300km in horizontal direction, no vertical localization
• Simulation period:  full year 2016, daily assimilation update
• DA Method: Ensemble Kalman Filter (LESTKF), ensemble size = 46
• Run time: 5.5 hours, using 12,000 processor cores on HLRN and JUWELS
• Updated: 

• Weakly-coupled DA: ocean state including SSH, temperature, salinity and 
velocity

• Strongly-coupled DA: ocean states + atmosphere temperature

Coupled model: AWI-CM 1.4

Results: Impact on the atmosphere

Acknowledgement

• ECHAM6
• JSBACH land surface
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• FESOM1.4
• includes sea ice

Coupler library: OASIS3-MCT
Two separate executables for atmosphere and ocean

759ECHAM6–FESOM: model formulation and mean climate

1 3

2013) and uses total wavenumbers up to 63, which corre-
sponds to about 1.85 × 1.85 degrees horizontal resolution; 
the atmosphere comprises 47 levels and has its top at 0.01 
hPa (approx. 80 km). ECHAM6 includes the land surface 
model JSBACH (Stevens et al. 2013) and a hydrological 
discharge model (Hagemann and Dümenil 1997).

Since with higher resolution “the simulated climate 
improves but changes are incremental” (Stevens et al. 
2013), the T63L47 configuration appears to be a reason-
able compromise between simulation quality and compu-
tational efficiency. All standard settings are retained with 
the exception of the T63 land-sea mask, which is adjusted 
to allow for a better fit between the grids of the ocean and 
atmosphere components. The FESOM land-sea distribu-
tion is regarded as ’truth’ and the (fractional) land-sea mask 
of ECHAM6 is adjusted accordingly. This adjustment is 
accomplished by a conservative remapping of the FESOM 
land-sea distribution to the T63 grid of ECHAM6 using an 
adapted routine that has primarily been used to map the 
land-sea mask of the MPIOM to ECHAM5 (H. Haak, per-
sonal communication).

2.2  The Finite Element Sea Ice-Ocean Model (FESOM)

The sea ice-ocean component in the coupled system is 
represented by FESOM, which allows one to simulate 
ocean and sea-ice dynamics on unstructured meshes with 
variable resolution. This makes it possible to refine areas 
of particular interest in a global setting and, for example, 
resolve narrow straits where needed. Additionally, FESOM 
allows for a smooth representation of coastlines and bottom 
topography. The basic principles of FESOM are described 
by Danilov et al. (2004), Wang et al. (2008), Timmermann 
et al. (2009) and Wang et al. (2013). FESOM has been 
validated in numerous studies with prescribed atmospheric 
forcing (see e.g., Sidorenko et al. 2011; Wang et al. 2012; 
Danabasoglu et al. 2014). Although its numerics are fun-
damentally different from that of regular-grid models, 

previous model intercomparisons (see e.g., Sidorenko et al. 
2011; Danabasoglu et al. 2014) show that FESOM is a 
competitive tool for studying the ocean general circulation. 
The latest FESOM version, which is also used in this paper, 
is comprehensively described in Wang et al. (2013). In the 
following, we give a short model description here and men-
tion those settings which are different in the coupled setup.

The surface computational grid used by FESOM is 
shown in Fig. 1. We use a spherical coordinate system 
with the poles over Greenland and the Antarctic continent 
to avoid convergence of meridians in the computational 
domain. The mesh has a nominal resolution of 150 km in 
the open ocean and is gradually refined to about 25 km in 
the northern North Atlantic and the tropics. We use iso-
tropic grid refinement in the tropics since biases in tropi-
cal regions are known to have a detrimental effect on the 
climate of the extratropics through atmospheric teleconnec-
tions (see e.g., Rodwell and Jung 2008; Jung et al. 2010a), 
especially over the Northern Hemisphere. Grid refinement 
(meridional only) in the tropical belt is employed also in 
the regular-grid ocean components of other existing climate 
models (see e.g., Delworth et al. 2006; Gent et al. 2011). 
The 3-dimensional mesh is formed by vertically extending 
the surface grid using 47 unevenly spaced z-levels and the 
ocean bottom is represented with shaved cells.

Although the latest version of FESOM (Wang et al. 
2013) employs the K-Profile Parameterization (KPP) for 
vertical mixing (Large et al. 1994), we used the PP scheme 
by Pacanowski and Philander (1981) in this work. The rea-
son is that by the time the coupled simulations were started, 
the performance of the KPP scheme in FESOM was not 
completely tested for long integrations in a global setting. 
The mixing scheme may be changed to KPP in forthcom-
ing simulations. The background vertical diffusion is set 
to 2 × 10−3 m2s−1 for momentum and 10−5 m2s−1 for 
potential temperature and salinity. The maximum value of 
vertical diffusivity and viscosity is limited to 0.01 m2s−1.  
We use the GM parameterization for the stirring due to 

Fig. 1  Grids correspond-
ing to (left) ECHAM6 at T63 
(≈ 180 km) horizontal resolu-
tion and (right) FESOM. The 
grid resolution for FESOM is 
indicated through color coding 
(in km). Dark green areas of the 
T63 grid correspond to areas 
where the land fraction exceeds 
50 %; areas with a land fraction 
between 0 and 50 % are shown 
in light green

ocean/ice state

Atmosphere Ocean

Data assimilation with PDAF

Initialize Model
Initialize coupler

Initialize grid & fields

Time stepper
in-compartment step

coupling

Post-processing

Init_parallel_PDAF

Do istep=1, nsteps

Init_PDAF

Assimilate_PDAF

Start

Initialize parallelization

Stop

Model
single or multiple executables

Extension for data assimilation

• ensemble data assimilation
• fully-implemented & parallel-

ized assimilation methods
• Open source: Code, 

documentation & tutorials at 
http://pdaf.awi.de

Satellite SST on Jan 1st, 2016

• Satellite SST from EU Copernicus, level 3
• Daily data with data gaps due to clouds
• Original 0.1o X 0.1o, interpolated to

unstructured ocean model grid
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Conclusion

Numerical experiments

Sea surface temperature

• Assimilation of SST improved the prediction of both SST and the subsurface T, for both 
the WCDA and SCDA.

• Assimilation of ocean observations into the ocean compartment in a coupled model 
improve the atmospheric prediction, e.g. the temperature and wind velocity, for both 
the WCDA and SCDA.

• Difference between WCDA and SCDA:

• For the ocean: no difference

• For the atmosphere: SCDA shows lightly better results than the WCDA.

D. Sidorenko et al., Clim. Dyn. 44 (2015) 757

Temperature (oC)

Results: Impact on the ocean
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1,00

2,00
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RMSE(SST) RMSE(proT) RMSE(proS)
Free_run WCDA SCDA

RMSE of SST, subsurface 
temperature (proT) and salinity 
(proS) for weakly coupled DA 
(WCDA) and strongly coupled DA 
(SCDA) for the whole one-year 
simulation period. The free run is
also shown for comparison. 

2m temperature deviations between model simulation and ECMWF reanalysis 

10m wind velocity deviations between model simulation and ECMWF reanalysis 
Difference: SCDA-WCDA

2m temperature 10m wind
Free_run 2.206 1.630

WCDA 1.974 1.499
SCDA 1.970 1.487

Difference: SCDA-WCDA

Velocity, m/s

Difference between SCDA and WCDA at 500hPa

Free_run WCDA

Free_run WCDA

5 m/s

Temperature Wind velocity

1 m/s

1 m/s

• RMSE of 2m temperature and 10m 
wind velocity for WCDA and SCDA for 
the whole one-year simulation period. 

• DA globally reduces the bias over the ocean. SCDA performs better in the Arctic region. 

• DA reduces the bias mainly in the equatorial region. 

• Difference for the
temperature at 500hPa is
small, but higher for the
wind velocity in the
middle and high latitudes.


