The benefit of pre- and postprocessing streamflow forecasts for 119 Norwegian catchments, evaluated within the frame of an operational flood-forecasting system

Trine J. Hegdahl, K. Engeland, I. Steinsland, and A. Singleton HS4.4 EGU - 08.05.2020

Ensemble forecasts are often biased and under-dispersed, and we investigate how processing schemes can improve flood forecasts

In this presentation we aim at answering the following research questions

- Are there differences in the performance of correction/processing schemes when applied to all the data compared to the flood situations of the study?
- Can we detect any regional or seasonal patterns?

ECMWF-ENS temperature and precipitaion are forced the operational HBV model for flood-forecasting catchments in Norway

Input data

ECMWF⁽¹⁾ ensemble forecasts

- 2014.01.01 to 2015.12.31
- 51 ensemble members
- 9 daily values
- Temperature (T) and precipitation (P)

In 2014 and 2015 there were several floods affecting catchments in large parts of Norway

Typical flood generating processes

Snowmelt: often spring floods inland and high elevations

Rain induced: autumn and summer showers Atmospheric rivers (AR) are responsible for the most extreme floods affecting western, coastal Norway

The ECMWF ensemble T and P are used raw and applied different preprocessing schemes

CAL⁽³⁾ refers to the calibration method applied to the operational ensemble forecast by Met Norway₃ in the period 2014 and 2015, and includes:

- Quantile mapping applied to temperature (T)
- Zero adjusted gamma distribution applied to precipitation (P)

BMA⁽⁴⁾ refers to Bayesian model averaging applied to the catchment average values

- Normal distribution was chosen for temperature
- Zero adjusted gamma distribution for precipitation

Combinations of T and P are forced the HBV models. Box-cox transformed streamflow is applied BMA, which enables an evaluation of the added effect of postprocessing

Best schemes for 119 catchments all data, vs 79 catchments only floods

The spatial distribution of optimal schemes indicates that the success depends on location

Postprocessing (blue) has effect for inland and high elevated catchments, less for the coastal catchments Preprocessing P alone and in combination with T improves the coastal flood forecasts

To assess the seasonal differences in predictability, we used the critical success index (CSI⁽⁶⁾)

The CSI indicate success for predictions exceeding pre-defined flood threshold. In this set-up multiple schemes can be successful for each evaluated catchment.

Each bar indicates the number of catchments that achieved the best CSI for each processing scheme

 Spring has a longer predictability for more schemes

(CC)

In autumn there is almost no predictability beyond 2-3 days

SPRING

AUTUMN

Main findings

- The best processing schemes for all data were not necessarily the best for flood data
 - Especially the effect of postprocessing is less pronounced for floods
- We find regional differences in how the applied schemes improve the flood predictions (CRPS)
 - Coastal versus inland areas
- The ensemble forecasts are less good at predicting autumn floods, and especially for longer lead-times
 - emphasis should hence be focused on methods to improve autumn precipitation and floods forecasting
- Flood forecasts **do** benefit from pre- and/or postprocessing
 - the optimal processing approaches does, however, depend on region, catchment and season

References

- 1) ECMWF. Set III Atmospheric model Ensemble 15-day forecast (ENS). Retrieved from https://www.ecmwf.int/en/forecasts/datasets/set-iii, 2018a.
- 2) Beldring, S.: Distributed Element Water Balance Model System.Norwegian Water Resources and Energy directorate, report 4, 40 pp, Oslo, 2008.

2) Bergstrom, S.: Development and application of a conceptual runoff model for Scandinavian catchments. Swedish Meteorological and Hydrological Institute, 1976.

- 3) https://github.com/metno/gridpp/
- 4) Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133(5), 1155-1174, 2005.
 4) Sloughter, J. Mc Lean, et al. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Monthly Weather Review, 135.9: 3209-3220, 2007.
- 5) Gneiting, T., Raftery, A. E., Westveld III, A.H., and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation. Monthly Weather Review, 133(5), 1098-1118, 2005.
- 6) Jolliffe, Ian T., and David B. Stephenson, eds. Forecast verification: a practitioner's guide in atmospheric science. John Wiley & Sons, 2012.

Thank you! tjh@nve.no

