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KEY POINTS 

• Simulated organized convection in a mean wind using a 
convection-permitting model in radiative convective equilibrium 

• In a mean wind, a convective cluster initially propagates, 
subsequently slows down and finally becomes stationary 

• The surface momentum flux mainly modulates the propagation 
speed acting as a drag on the near-surface wind, while the surface 
enthalpy flux marginally contributes to the propagation speed
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Motivation

• Similarities between convective self-aggregation and tropical deep convection 
• No large-scale background flow considered in the self-aggregation studies 

Introduce a large-scale background flow to a convection-permitting simulation to 
analyze the behavior of convective self-aggregation in the mean flow

Convection storm cells 
over Namibia 

Image courtesy of the Earth Science and 
Remote Sensing Unit (STS005-44-1739), 
NASA Johnson Space Center
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Snapshot of the liquid 
water path in UCLA-LES  
in a RCE framework
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Upwind side: 
• Intensified wind through the low-

level circulaUon in a mean wind ub

• Enhanced surface enthalpy fluxes 
(SEF)

Ub

SEF

Downwind side: 
• Reduced wind through the low-

level circulaUon in a mean wind ub

• Suppressed surface enthalpy fluxes 
(SEF)

Asymmetry of SEF → Preference of the development of convection on the upwind side

→ The convective cluster would propagate upwind!

Hypothesis Propagation of a convective cluster through the wind-induced surface 
heat exchange (WISHE) feedback (Emanuel, 1987)
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Simulation setup
• UCLA-LES in radiative convective equilibrium 

-  = 3 km and a stretched vertical grid levels 
(  = 75 m) 
- on a domain size of 576x576x27 km3 
- following Hohenegger and Stevens (2016)

• No convective parameterization 
• Sub-grid fluxes with Smagorinsky model 
• Homogeneous initial conditions 
• Cyclic boundary conditions
• No Coriolis force, no diurnal cycle
• SST = 301 K

Δx
Δzmin

Research focus: 
How a convective cluster behaves 
in a mean wind. 
→  Simulation is run for 26 days 
until convection is self-aggregated.

After day 26 ..

Motivation ○ | Hypothesis ○ | Simulation setup ● ○ | Results ○ ○ ○ ○ | Conclusion ○

mailto:hyunju.jung@kit.edu
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-5075.html


@          

Impose a mean wind
         Momentum flux     

Surface enthalpy flux     

 
 
 

The turbulence scale of velocity  is proportional to the near-
surface horizontal velocity . 

Fm = ρ (w′ u′ 2 + w′ v′ 2)1
2 |sfc

SEF = ρ ( cp w′ θ′ + lv w′ q′ ) |sfc

w′ u′ 2 + w′ v′ 2 = u*2

w′ θ′ = − u*θ*
w′ q′ = − u*q*

u*
uh

uh = (u+ub)2 + v2

UB2_unius: 
 = 0.09 m/s in  (not in !)u* Fm SEF

 Experiment

 UB0 0
 UB2 2
 UB4 4
 UB2_unius 2

ub [ m s−1 ]
−ub

Atmosphere

ub

The modeled flow  feels 
 as if  is on a moving 

conveyor belt with a 
velocity of 

u
ub u

−ub

Each experiment is run for 
20 days.

• A mean wind  is imposed through the surface flux calculation to minimize the vertical shearub
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Transient phase Quasi-stationary stage

1.88 ± 0.16 m/s

0.23 ± 0.31 m/s
0.10 ± 0.47 m/s
0.29 ± 0.76 m/s

Why does propagation speed 
arrive at 0 m/s regardless of the 
mean wind speed???

How does a convective cluster propagate in the mean wind?
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• Transient phase: 
 <  

→ Convection propagates 
upwind! 

• Quasi-stationary stage: 
 = 0 m/s

ucld ub

ucld

*Note that here day 0 indicates the time when the mean wind begins to be 
imposed.

cl
d
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Thermodynamic response to the mean wind
Transient phase Quasi-stationary stage

r=0, center of a convective cluster 
r<0, upwind side 
r>0, downwind side

• Asymmetry w.r.t. the center of the convective 
cluster in the transient phase 

- Asymmetry in  agrees with the hypothesis. 

- Same spatial distribution in  but not in  or 
 

• Symmetry in the quasi-stationary stage 
- How do the asymmetries become symmetric? 
- Why is a convective cluster NOT advected in a 

mean wind, instead stationary? 

w′ θ′ e
uh Δq

Δθ
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*Note that  is a indicator of  w′ θ′ e SEF

w′ θ′ e ≈ [w′ θ′ + l
cp ( p0

p )
Rcp
cp w′ q′ ]
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Role of the surface momentum flux  acting as a dragFm

Transient phase Quasi-stationary stage

Transient phase

Upwind side: 
• Enhanced  
• Strong drag on  
• Decrease in 

Fm
uh

uh

Downwind side: 
• Suppressed  
• Weak drag on  
• Attaining 

Fm
uh

uh

→ the near-surface horizontal wind  has the comparable 
maximum on the upwind and downwind sides. 
Symmetrized!  

→ Symmetry in  results in the surface turbulent fluxes ( , 
) in the quasi-stationary stage

uh

uh Fm
SEF

Quasi-stationary stage

Transient phase Quasi-stationary stageTransient phase Quasi-stationary stage

Motivation ○ | Hypothesis ○ | Simulation setup ○ ○ | Results ○ ○ ● ○ | Conclusion ○

mailto:hyunju.jung@kit.edu
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-5075.html


@          

Does the momentum flux dominantly modulate the near- 
surface wind?
UB2_unius 

• Experiment to suppress the dynamic feedback modulating the interaction between the surface 
momentum flux  and the near-surface horizontal wind   

• Propagation speed:  = 1.88 m/s 
- smaller than the mean wind speed = 2 m/s 
- convective cluster indeed propagates upwind 

• Asymmetry of the thermodynamic flux  in the transient phase and the quasi-stationary stage 

Yes, the thermodynamic response to the mean wind contributes to the propagation speed to a 
small extend.

Fm uh

ucld
ub

w′ θ′ e
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Conclusion

Ub
Ucld

SEF Fm

Ub

SEF Fm

Transient phase Quasi-stationary stage
• In a mean wind, the convective cluster 

propagates upwind, slows down, and eventually 
becomes stationary. 

• The dynamic response to the mean wind 
dominates the propagation as the surface 
momentum flux acts as a drag on the near-
surface wind, which consequently feeds back 
moderating surface turbulent fluxes. 

• The thermodynamic feedback, through WISHE, 
is very weak and is regulated by the dynamic 
feedback.
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