

Magnetosheath high speed jets observed simultaneously by Cluster and MMS

C. P. Escoubet¹, K.-J. Hwang², S. Toledo-Redondo^{3,24}, L. Turc⁴, S.
E. Haaland^{5,6}, N. Aunai⁷, J. Dargent⁸, J. P. Eastwood⁹, R. C. Fear¹⁰,
H. Fu¹¹, K. J. Genestreti¹², D. B. Graham¹³, Yu. V. Khotyaintsev¹³,
G. Lapenta¹⁴, B. Lavraud³, C. Norgren⁵, D. G. Sibeck¹⁵, A.
Varsani¹⁶, J. Berchem¹⁷, A. P. Dimmock¹³, G. Paschmann¹⁸, M.
Dunlop^{11,19}, Y. V. Bogdanova¹⁹, O. Roberts²⁰, H. Laakso²¹, A.
Masson²¹, M. G. G. T. Taylor¹, P. Kajdič²², C. Carr⁹, I. Dandouras³,
A. Fazakerley¹⁶, R. Nakamura²⁰, J. L. Burch², B. L. Giles¹⁵, C.
Pollock²³, C.T. Russell²⁵, R. B. Torbert¹²

¹ESA/ESTEC (The Netherlands), ²SwRI (USA), ³IRAP, CNRS, UPS, CNES, Université de Toulouse (France),
 ⁴Helsinki U. (Finland), ⁵Bergen U. (Norway), ⁶MPS (Germany), ⁷LPP (France), ⁸Physics Department "E. Fermi",
 University of Pisa and CNISM, Pisa, Italy, ⁹IC London (UK), ¹⁰Southampton U. (UK), ¹¹Beihang U. (China),
 ¹²UNH (USA), ¹³IRF-U (Sweden), ¹⁴KU Leuven (Belgium), ¹⁵GSFC/NASA (USA), ¹⁶MSSL (UK), ¹⁷UCLA,
 Department of Physics and Astronomy (USA), ¹⁸MPE (Germany), ¹⁹RAL Space, UKRI-STFC (UK), ²⁰IWF/OEAW (Austria), ²¹ESA/ESAC (Spain), ²²Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico,
 ²³Denali Scientific (USA), ²⁴Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain, ²⁵UCLA, Department of Earth, Planetary and Space Science (USA)

European Space Agency

High Speed jet questions

- Origin (discontinuities, bow shock ripples, nanodust)
- Shape, size and frequency
- Effect on the magnetopause

=> Cluster-MMS conjunction in magnetosheath/magnetopause to address these questions

Cluster-MMS positions on 7 Feb. 2017

Cluster-MMS positions on 7 Feb. 2017

OMNI shifted to BS

- IMF around 4 nT at beginning and end of interval, decreased and very small (0.4 nT at 01 UT) in the middle
- Pure Bx component(2 nT) between 00:40-01:10 => dayside quasi parallel shock
- SOHO and THEMIS-B data added for complementarity

Cluster-MMS data

- Cluster and MMS most of time in magnetosheath (black bar)
- Magnetosheath is turbulents with strong Vx negative flows (red line)
- High speed jets shown in Vx in panels b, e and h
- A few magnetopause crossings
- In panel h:
 - Dust impacts in red dashed lines
 - Burts mode in black line

High Sped Jet:

- around same time on Cluster and MMS (24 s overlap)
- size:
 - Cluster : 1.9 Re
 - MMS: 2.8 Re
- => Larger at MMS due to higher speed and longer event
 - If assume ratio para/perp of 0.5 from Plaschke et al. 2016, we get:
 - Cluster: 1.9 x 3.8 Re
 - MMS: 2.8 x 5.6 Re

Cluster-MMS data

- C1: 21 HSJs in 65 min.
- MMS1: 12 HSJs, but intervals of magnetosphere and boundary layers

Cluster-MMS magnetopause crossing

- Opposite crossing:
 - Cluster inbound
 - MMS outbound
- Cluster: sharp and short MP (4s)
- MMS wide and long (70s)
- C1 and MMS1: low B field on sheath side (asymmetry)

SAT	Time (UT) Inbound/ Outbound	Method	Speed (km s ⁻¹)	Normal X,Y,Z _(GSE)	Normal model X,Y,Z _(GSE)	Angle data- model (°)
MMS	01:06:24 O	4 S/C timing	-83	0.99, -0.03, 0.10	0.79, -0.61, 0.06	35
		MVAB MMS1 MMS2 MMS4	-37 -43 -42	0.95, -0.30, 0.11 0.95, -0.27, 0.14 0.95, -0.27, 0.13	" " "	22 25 25
		MFR+MVAV 1 MMS2 MMS4	21 2 36	0.27, -0.94,-0.22 0.15, -0.95, 0.27 0.00, -0.89,-0.45	" " "	37 47 55
CL	01:06:24 I	4 S/C timing	142	0.53, 0.23, 0.82	0.84, 0.02, 0.53	28
		MVAB C1 C4	41 120	0.76, -0.04, 0.65 0.54, -0.03, 0.84	" "	11 26
		MFR+MVAVC1 C4	36 108	0.75, 0.54, 0.39 0.59, 0.17, 0.79	" "	32 23

Speed very different at Cluster and MMS

Large angle between observations and model of magnetopause nor

Four dust impacts (two shown)

Angle Θ_{Bn} : IMF – shock normal

Cluster: HSJs observed MMS: no HSJ Cluster: HSJs MMS: HSJs

HSJs possible extent

Summary and conclusions

- Many HSJs were observed at two very large separation over the dayside of the magnetosheath;
- Two HJSs were observed simultaneously at Cluster and MMS and given their characteristics and size, they would most likely be two separated HSJs;
- Strong indentation of the magnetopause in the 8 crossings;
- One inbound magnetopause crossing observed by Cluster was observed simultaneous to an outbound magnetopause crossing of MMS;
- Four dust impacts were observed as a short pulse of the spacecraft potential between 00:45 UT and 01:10 UT on MMS2 and MMS3. None of these impacts are occurring simultaneously with the observation of HSJs.
- Quasi parallel shock more favorable for generation of HSJs
- Future conjunctions between 2021-2022 should give more double and triple simultaneous measurements with Cluster, MMS and THEMIS

