

session CR2.1 Monday 4, May 2020

The use of Frequency Domain Electro-magnetometry for the characterization of permafrost active layers: case studies in the Swiss Alps

Jacopo Boaga ¹, Marcia Phillips ², Jeannette Noetzli ², Anna Haberkorn ², Robert Kenner ², Alexander Bast ²

- ¹ University of Padova, Department of Geoscience, Padova, Italy
- 2 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

Example: Fluela site

Active layer $\approx 2.5 \text{ m}$

No ice / discontinuous layers

Permafrost

16

13

agreement with borehole temp.

Depth m

-2

-4

-6

5

10

Distance m

No

30

25

20

Good agreement with expected /
not expected
permafrost presence

Discussion I

FDEM for permafrost works everywhere?

Example: Totalp site

RAW data

- Negative conductivity values and scattered data

- Massive presence of ferro-magnetic rocks (Serpentinite)

Electro- Magnetic

 \triangle

Rock - Glacier

Discussion

• EM method is logistically easier and quicker than ERT to extend punctual borehole information in wider area

but...

- EM has lower resolution than ERT and is influenced by a number of environmental issues:
- Rock Type
- Presence of voids / blocks
- Height of the Probe not constant
- Sensitive to presence of metal (e.g. anti-avalanche str.)
- Open issues about inversion and interpretation
- -Relevant drifts observed for temperature variations and probe/soil distance!!

