The effect of soil type and crust presence on non-rainfall water inputs: laboratory and field experiments

Pedro Berliner, Anxia Jiang, Carmel Neuberger and Nurit Agam

Wyler Dpt. Of Dryland Agriculture
Jacob Blaustein Institutes for Desert Research,
Ben-Gurion University of the Negev

During the dry summer months the sea breeze is the most important meteorological feature in the South- West region.

Both soil types are covered by thin crusts

- Loess by a physical crust
- Sand dunes by biological crust

Schematic distribution of main soil types in the Western Negev and Gaza strip. (O. Crouvi et al., 2015)

OBJECTIVES:

Evaluate

- the magnitude of atmospheric water vapor absorption of the two main soil types in the area;
- the effect the absence of a crust has on the water vapor absorption patterns.

MATERIALS & METHODS

Selected properties of various soil layers

Soil	Depth	Sand (%)	Silt (%)	Clay (%)	Organic matter (%)	Electrical conductivity (dS/m)	Water content at saturation (%)	Sodium content (mEq/L)
Sand	crust layer	81	16	3	0.91	5.14	35	3.8
	1-5cm	86	12	2	0.36	0.47	23	0.9
	5-10cm	87	11	2	0.32	0.37	22	0.8
Loess	crust layer	41	47	12	0.78	2.27	27	12.5
	1-5cm	47	43	10	0.87	8.65	30	58.3
	5-10cm	46	44	10	0.55	8.03	29	56.7

MATERIALS & METHODS

Field Trial

Four micro-lysimeters:

- 1. Sand
- 2. Loess
- 3. Sand crust removed
- 4. Loess crust removed

Scale: 30 kg with 0.1 gr resolution (equivalent to 0.004 mm).

Electronic output connected to DAS. One min. burst averages were recorded every 15 min.

SCHEMATIC VIEW OF MICRO LYSIMETER (M-L)
a: PVC pipe with undisturbed soil core; b: scale; c:
insulating layer; d: box insulation; e: soil

Interim conclusions from field study

- The Loess crusted soil absorbed more water vapor than the crusted sandy soil
- Both crust types significantly restricted water vapor absorption by the respective underlying soils.

The latter aspect was studied in a laboratory study carried out under isothermal conditions.

M&M. Isothermal lab trial

Samples were cooled in a dry air through-flow dessicator and placed in constant RH boxes.

In each box one replicate of each. Samples were weighed at fixed intervals and returned to the box.

Sand-Crusted

Sand (sample depth: 7 cm)

Interim conclusion from isothermal lab study

- The depth of the sample strongly affects the total amount of water vapor absorption of the sandy soil and this aspecy is slightly less marked for the loess soil
- Presence of a crust does neither affect the water absorption patterns nor the total water vapor absorption.

CONCLUSIONS (from both studies)

- The presence of a crust strongly affects water vapor absorption patterns and the total water absorption under natural field conditions.
- The fact that the absorption patterns of the crusted samples in the field differed from those measured under isothermal conditions strongly suggests that the presence of a crust affects the flux of sensible heat in the soil and hence the surface energy balance.

