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1. Abstract and introduction 

The understanding of hydrological processes requires the investigation of preferential flows. In particular, the infiltration 10 

compartment is strongly affected by preferential flows. Recently, Lassabatere et al. (2014) proposed an analytical model for 

infiltration in soils impacted by preferential flow. These authors extended the model developed by Haverkamp et al. (1994) 

for single permeability soils to the case of dual permeability soils. However, this model remains implicit, requiring an 

inversion procedure for the quantification of the bulk cumulative infiltration. Such an implicit feature prevents from direct 

computation and may annoy any fellow who wants a direct and simple computation procedure. In this paper, we develop two 15 

approximate expansions for both transient and steady states. For that, we use the approximate expansions proposed by 

Haverkamp et al. (1994) for single permeability systems. These expansions are written for each compartment of the dual 

permeability soils, i.e. the matrix and the fast-flow regions and are combined for the computation of the bulk infiltration. 

After formulation, these expansions are assessed in terms of their capability to accurately reproduce the complete implicit 

model. Their validity time intervals are also determined and discussed. The main limitation for the use of these expansions 20 

results from the fact that the time intervals that define the transient and steady states are contrasted between the matrix and 

the fast-flow regions. However, some domain of validity can be defined allowing the use of these approximate expansions.  

2. Theory 

Recently, Lassabatere et al. (2014) proposed an analytical model for the 3-D axisymmetric cumulative infiltration into 2K 

soils, assuming that the cumulative infiltration was the summation of the contribution of the matrix and the fast-flow regions: 25 
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where the subscripts ‘m’ and ‘f‘’ denote the parameters of the matrix and the fast-flow regions, respectively, the variables rd, 

 [s − 0], K [Ks − K0], , and   are the disc radius, the difference in water content and hydraulic conductivity, and two 30 

infiltration constants set at 0.6 and 0.75, respectively; 𝑤𝑓 is the void ratio occupied by the fast-flow region. This equation is 



2 

 

referred to as QEI-2K since it corresponds to the extension of the quasi-exact implicit model (QEI) developed for single 

permeability soils by Haverkamp et al. (1994) to dual permeability (2K) systems. 

The sorptivity, S, of each region can be computed considering the usual approximation proposed by Parlange et al. (1975): 

𝑆2(𝜃0, 𝜃𝑠) = ∫ (𝜃𝑠 + �̅� − 2𝜃0) 𝐷(�̅�)𝑑�̅�
𝜃𝑠
𝜃0

         [2a] 

𝐷(𝜃) = 𝐾(𝜃)
𝑑ℎ

𝑑𝜃
            [2b] 5 

where �̅� is a dummy variable and the diffusivity corresponds to the product of the hydraulic conductivity with the derivative 

of the water retention curve 𝐷(𝜃) = 𝐾(𝜃)
𝑑ℎ

𝑑𝜃
 . 

The QEI-2K model defined by equation [1] may be complicated to compute since the function is defined in an implicit way. 

For any time, t, the infiltrations into the matrix and the fast-flow regions, 𝐼1𝐷,𝑚 and 𝐼1𝐷,𝑓, must be computed by resolving the 

equations [1b] and [1c]. Then, in this study, we try to design approximate expansions for the direct explicit quantification of 10 

the bulk cumulative infiltrations at both transient and steady states. For that, we consider the approximate expansions already 

proposed by Haverkamp et al. (1994) for single permeability systems before combining them. These expansions read: 

𝐼𝑂(1)(𝑡) = 𝑆√𝑡            [3a] 
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These equations can be applied to both the matrix and the fast-flow regions and combined using equation [1a], for the case of 

the dual permeability soils: 

𝐼𝑂(1)_2𝐾(𝑡) = (1 − 𝑤𝑓) 𝐼𝑂(1)_𝑚(𝑡) + 𝑤𝑓  𝐼𝑂(1)_𝑓        [4a] 

𝐼𝑂(2)_2𝐾(𝑡) = (1 − 𝑤𝑓) 𝐼𝑂(2)_𝑚(𝑡) + 𝑤𝑓  𝐼𝑂(2)_𝑓        [4b] 

𝐼+∞_2𝐾(𝑡)   = (1 − 𝑤𝑓) 𝐼+∞_𝑚(𝑡)  + 𝑤𝑓  𝐼+∞_𝑓        [4c] 20 

After rearranging the terms, the following approximate expansions come out. For the fake of clarity, was assume similar 

values for the infiltration constants, 𝛽 and 𝛾, for the two regions: 
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The equations [5] and their accuracy to reproduce the quasi-exact implicit model, QEI-2K model defined by equations [1] is 

studied below. 

3. Material and methods 

In this section, we illustrate the accuracy of equations [5] for the specific case of a loamy soil with 1-mm radius macropores. 

This synthetic dual permeability soil has already been studied by Lassabatere et al. (2019). The bulk water content and 30 

hydraulic conductivity functions combine the contributions of the matrix and fast-flow regions (Gerke and van Genuchten, 

1993): 

𝜃2𝐾(ℎ) = 𝑤𝑓𝜃𝑓(ℎ) + (1 − 𝑤𝑓) 𝜃𝑚(ℎ)         [6a] 

𝐾2𝐾(𝜃) = 𝑤𝑓𝐾𝑓(𝜃𝑓) + (1 − 𝑤𝑓) 𝐾𝑚(𝜃𝑚)         [6b] 
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For each region, the water retention and hydraulic conductivity functions are defined with van Genuchten model (1980) with 

Burdine’s conditions and Brooks and Corey model (1964): 

𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟) (1 + |
ℎ

ℎ𝑔
|
𝑛

)
−𝑚

 with 𝑚 = 1 −
2

𝑛
      [7a] 

𝐾(𝑆𝑒) = 𝐾𝑠 𝑆𝑒
2

𝑚𝑛
+3

           [7b] 

Where 𝑆𝑒 = ( − r)/(s − r) is the saturation degree. 5 

For the matrix, we considered the shape and scale parameters related to loamy soils as defined by Carsel and Parrish (1988). 

The fast-flow region was assumed to occupy 10% of the bulk soil, i.e., 𝑤𝑓 = 0.1. Its residual water content, r,f, was set at 

zero and its saturated water content, s,f, was set at a large value, i.e., 0.70. Its shape parameter, nf, was set at 3.75, as typical 

of coarse soils (Schaap et al., 2001). The scale parameter for water pressure head of the fast-flow region, hg,f, was derived 

from the pore radius, rg,f, using the Young−Laplace equation (see Lassabatere et al., 2019, for more details). The value of 10 

hydraulic conductivity, Ks,f, was computed from that of the loamy matrix, Ks,m, assuming a linear increase with the square of 

the pore radius, as indicated by Poiseuille’s law (Sutera and Skalak, 1993). 

  

 

Figure 1: Hydraulic water retention (a) and hydraulic conductivity (b) functions for the synthetic dual permeability soil. 15 

The water retention and hydraulic conductivity functions are detailed in Figure 1. The fast-flow region increases 

significantly the bulk water content and hydraulic conductivity close to saturation. It occupies 10% of the bulk soil 

increasing the soil porosity by an additional 15.3% (Figure 1a). Regarding hydraulic conductivity, the increase is much more 

important. The bulk hydraulic conductivity is increased tenfold (Figure 1b). 

4 Results 20 

4.1 Separate infiltrations into the matrix and the fast-flow regions 

Cumulative infiltrations were computed for the case of a Beerkan run, i.e. zero water pressure head at surface. At first, we 

computed the cumulative infiltration for each region, considering the quasi-exact implicit (QEI) formulation, i.e., equations 

[1b] and [1c] for the matrix and the fast-flow region, respectively. We also computed the approximate expansions, using 

equations [3], for the two regions. Then, we computed the relative error between the approximate approximations and the 25 
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QEI formulation for the two regions. These functions were computed to time dataset encompassing both transient and steady 

states. 

The figure 2 shows that the first approximation, 𝐼𝑂(1), is quickly imprecise, with a relative error increasing from 5% to more 

than 40% for the fracture (Figure 2d, green line), and from 5% to close to 15% for the matrix (Figure 2b, green line). Then, 

the second approximate expansion is much better, 𝐼𝑂(2), with relative errors less than 2.5% for the matrix (Figure 2b, blue 5 

line) and less than 10% for the fracture (Figure 2d, blue line). For these two expansions, the relative errors increase with 

time. A validity time interval, [0, 𝑡𝑚𝑎𝑥] may be defined for any given tolerance, e.g. 5%, or 1%. For steady state expansion, 

𝐼+∞, the opposite trend is observed, with a large drop in relative errors (Figure 2b-d, red dashed line). Logically, the steady 

state expansion addresses to the cases of long times. By analogy with that mentioned above for the transient approximate 

expansions, a validity time interval, [𝑡𝑚𝑎𝑥 , +∞) can be defined for any given tolerance, e.g. 5%, or 1%. The validity times 10 

are proposed for 1% tolerance and listed in Table 1 (see below in the following section).  

 

Figure 2: Separate cumulative infiltrations in the matrix and fast-flow regions: QEI formulation, 𝑰(𝒕), along with the transient, 

𝑰𝑶(𝟏)(𝒕) and 𝑰𝑶(𝟐)(𝒕), and steady state, , 𝑰+∞(𝒕), expansions (left) and related relative errors (right). The red point corresponds to 

the intersection between the steady state and transient expansion relative errors. 15 

Between the two validity times, the use of either the transient or the steady state expansion leads to errors higher than the 

chosen tolerance. That may involve quite large intervals, for instance [190.5,767.5] (min) for the matrix. In this time interval, 

we can build a shifting approximate expansion as follows. An intersection point can be identified between the two relative 

errors related to the transient and steady state expansions (Figure 2b and d, red point). For the case of the matrix, it 

corresponds to time ~ 566 min and to a relative error of ~ 2%. For the fast-flow region, it corresponds to 0.98 min and to a 20 

relative error of 5%.  
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The transient state expansion is considered valid below that transition point, the steady state expansion is considered 

afterwards, leading to the following definition of the shifting approximate expansion: 

𝐼3𝐷_𝑆𝐴(𝑡) = {
𝐼𝑂(2)(𝑡) = 𝑆√𝑡 + (

2−𝛽

3
∆𝐾 + 𝐾0 +

𝛾𝑆2

𝑟𝑑∆𝜃
) 𝑡               𝑖𝑓     𝑡 ≤ 𝑡𝑡𝑟

𝐼+∞(𝑡)  =  𝐾𝑠𝑡 −
𝑙𝑛(𝛽)

2(1−𝛽)

𝑆2

∆𝐾
                                         𝑖𝑓     𝑡 ≥ 𝑡𝑡𝑟

     [8] 

With the transition time, 𝑡𝑡𝑟, corresponding to the intersection point: 

𝑡𝑡𝑟          
𝐼(𝑡𝑡𝑟)−𝐼𝑂(2)(𝑡𝑡𝑟)

𝐼(𝑡𝑡𝑟)
=

𝐼+∞(𝑡𝑡𝑟)−𝐼(𝑡𝑡𝑟)

𝐼(𝑡𝑡𝑟)
⁄          [9a] 5 

𝑡𝑡𝑟          𝐼(𝑡𝑡𝑟) =
𝐼𝑂(2)(𝑡𝑡𝑟)+𝐼+∞(𝑡𝑡𝑟)

2
⁄           [9b] 

The two definitions [9a] and [9b] are strictly equivalent. This strategy has already been proposed by Fernandez-Galvez et al. 

(2019) and the function 𝐼3𝐷_𝑆𝐴(𝑡) is referred to as the shifting approximate expansion. By construction, the relative error 

between 𝐼3𝐷_𝑆𝐴(𝑡) and the target, 𝐼(𝑡), corresponds to that of the transient state expansion for 𝑡 ≤ 𝑡𝑡𝑟 (Figure 2b-c, blue line 

for 𝑡 ≤ 𝑡𝑡𝑟) and that of the steady state expansion (Figure 2b-c, red line for 𝑡 ≥ 𝑡𝑡𝑟). By construction, the maximum error of 10 

𝐼3𝐷_𝑆𝐴(𝑡) corresponds to any of the two relative errors at time 𝑡 = 𝑡𝑡𝑟. The maximum errors and transitions times of 𝐼3𝐷_𝑆𝐴(𝑡) 
are tabulated in Table 1. 

4.2 Proposed approximations for the cumulative infiltration into the 2K system 

As a second step, the proposed approximate expansions, defined by equations [4], or equivalently [5] were applied to the 

case of the dual permeability system described in the material and method section and compared to the bulk cumulative 15 

infiltrations computed with the QEI-2K model (Figure 3). As for the separate infiltration into the two regions, we considered 

the case of a Beerkan run, i.e. zero water pressure head at surface. The time dataset was adapted to encompass both the 

transient and the steady states. 

 

Figure 3: cumulative infiltrations into the dual permeability soil: QEI-2K formulation, 𝑰𝟐𝑲(𝒕), along with the transient, 𝑰𝑶(𝟏)_𝟐𝐊(𝒕) 20 

and 𝑰𝑶(𝟐)_𝟐𝐊(𝒕), and steady state expansions, 𝑰+∞_𝟐𝐊(𝒕) (left) and related relative errors (right). The red point corresponds to the 

intersection between the steady state and transient expansion relative errors 

We found the same trends as for the matrix and fast-flow regions alone (Figure 3). The transient and steady state expansions, 

𝐼𝑂(2)_2𝐾(𝑡)  and 𝐼+∞_2𝐾(𝑡) , approximate to a certain extent the bulk cumulative infiltration,  𝐼2𝐾(𝑡) . However, the 

approximations are less accurate (Figure 3a versus Figure 2a or c) and the relative errors are much higher (Figure 3b versus 25 

Figure 2b or d). For instance, the relative errors of the transient expansion quickly increase up to 20% (Figure 3b, blue line) 

versus less than 5% for the fast-flow region (Figure 2d, blue line) and 1% for the matrix (Figure 2b, blue line). Similarly, the 
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steady state expansion decreases much less than for the case of single permeability system (Figure 3, red line, versus Figure 

2, red lines). 

As for the matrix and the fast-flow regions alone, the validity times were estimated for transient and steady state 

approximations. We considered a tolerance of 1%, as for the single permeability systems. The corresponding validity time 

intervals are tabulated in Table 1. We can see the interval endpoints take intermediate values between the case of the matrix 5 

and the fast-flow regions. The time limit for the transient state related to 2K system is between that of the fast-flow region -

very small- and that of the matrix region -very large (Table 1, column “Transient state”). Similarly, the time limit for the 

steady state and 2K system is between that of the fast flow region, quite small, and that of the matrix, much larger (Table 1, 

column “Steady state”). We also notice that the time limits of 2K systems are much closer to the limits of region that exhibit 

the smallest validity time intervals. For instance, for the transient state, the time limit of 2K system is closer to the endpoint 10 

of interval related the fast-flow region (Table 1). For the steady state expansion, the time limit of 2K is closer to that of the 

matrix region (Table 1). In other words, the validity time intervals of the 2K models are constrained by the accuracy of each 

of the approximate expansions of the two regions. When time is out of the validity interval for one of the regions, the whole 

approximation is spoiled and the accuracy is impacted. Consequently, the most restrictive constraint predominates. 

Table 1: Validity time intervals for the approximate expansions: validity time endpoints for the transient and steady state 15 
expansions (columns “Transient state” and “Steady state”), and transition time, ttr, with maximum errors for shifting approximate 

expansion (column Shifting Approx.). Times are indicated in minutes for the matrix (“matrix”), fast-flow region (“fast-flow”) and 

the dual permeability system (“2K”). 

Transient state Steady state Shifting Approx. 

𝐼𝑂(2)(𝑡) 𝐼+∞(𝑡) 𝐼𝑆𝐴(𝑡) 
matrix fast-flow 2K matrix fast-flow 2K matrix fast-flow 2K 

0 0 0 767.5 1.86 417.8 566 0.983 53.5 

190.5 0.152 0.25 + + + 2.1% 4.9% 21.9% 

 

As for the separate infiltrations into the single permeability systems, we considered the shifting approximate expansion for 20 

the dual permeability system, shifting from the transient to the steady state expansions: 

𝐼3𝐷_𝑆𝐴_2𝐾(𝑡) =

{
 
 

 
 𝐼𝑂(2)_2𝐾(𝑡) = ((1−𝑤𝑓) 𝑆𝑚 + 𝑤𝑓𝑆𝑓)√𝑡 + (

2−𝛽

3
∆𝐾2𝐾 + 𝐾0,2𝐾 +

𝛾

𝑟𝑑
((1 −𝑤𝑓)

𝑆𝑚
2

∆𝜃𝑚
+ 𝑤𝑓

𝑆𝑓
2

∆𝜃𝑓
)) 𝑡  𝑖𝑓  𝑡 ≤ 𝑡𝑡𝑟_2𝐾

𝐼+∞_2𝐾(𝑡) = 𝐾𝑠,2𝐾𝑡 −
𝑙𝑛(𝛽)

2(1−𝛽) 
((1−𝑤𝑓)

𝑆𝑚
2

∆𝐾𝑚
+ 𝑤𝑓

𝑆𝑓
2

∆𝐾𝑓
)                                                                                𝑖𝑓     𝑡 ≥ 𝑡𝑡𝑟_2𝐾

  [10] 

With the transition time, 𝑡𝑡𝑟_2𝐾, corresponding to the intersection point: 

𝑡𝑡𝑟_2𝐾          
𝐼2𝐾(𝑡𝑡𝑟_2𝐾)−𝐼𝑂(2)_2𝐾(𝑡𝑡𝑟_2𝐾)

𝐼2𝐾(𝑡𝑡𝑟_2𝐾)
=

𝐼+∞_2𝐾(𝑡𝑡𝑟_2𝐾)−𝐼2𝐾(𝑡𝑡𝑟_2𝐾)

𝐼2𝐾(𝑡𝑡𝑟_2𝐾)
⁄       [11a] 

𝑡𝑡𝑟_2𝐾          𝐼2𝐾(𝑡𝑡𝑟_2𝐾) =
𝐼𝑂(2)_2𝐾(𝑡𝑡𝑟_2𝐾)+𝐼+∞_2𝐾(𝑡𝑡𝑟_2𝐾)

2
⁄        [11b] 25 

The decrease in accuracy of each approximate expansion, as mentioned above impacts the accuracy of the bulk shifting 

approximate expansion. In that case, the transition time is around 53.5 min versus 1 min and 566 min for the fast flow and 

the matrix regions, respectively (Table 1, column “Shifting Approx.”). Again, as already observed for the validity times, the 

transition time for the 2K soils takes intermediate values between the fast-flow regions, with very short transition time, and 

the matrix with a much longer transition time. Besides, the relative error of the shifting approximation is around 22% versus 30 

5% and ~2% for the fast-flow and matrix regions. Such an increase in the relative errors reflects the degradation of the 

quality of the shifting approximate expansions. In other words, the shifting approximation is impacted by the less accurate 

transient and steady states expansions. 
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5. Conclusions 

In this study, we investigated the development of approximate expansions for the quasi-exact implicit model developed by 

Lassabatere et al. (2014) for cumulative infiltration into dual permeability soils. The proposed approximate expansions make 

use of those developed by Haverkamp et al. (1994) for the case of single permeability systems. These expansions are easy to 

compute and avoid numerical indetermination due to the use of implicit equations. These expansions proved to be efficient 5 

for the approximation of the bulk cumulative infiltrations. However, their use should be restricted to the respective validity 

time intervals. Regarding the transient state expansion, the validity time interval of the 2K expansion resumes to that of the 

fast-flow region, thus restricted to less than a minute. Regarding the steady state expansion, the validity time interval of the 

2K expansion resumes to that of the matrix region, requiring times over hundreds of minutes for a correct use of it. Briefly, 

the use of these approximate expansions requires the approximate expansions related to the two regions to be valid. 10 

Consequently, the fast-flow region imposes a very short time for the transient expansion. In opposite, the matrix imposes a 

very long time for the steady state expansion. That proves the difficulty to build precise approximate expansions for dual 

permeability systems. Consequently, the strategy based on the shifting approximate expansion produces a poor 

approximation of the bulk cumulative infiltration, whereas it remains efficient for single permeability systems. Further 

investigations are required for the determination of approximate expansions for bulk infiltrations into dual permeability 15 

systems. 
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