Multiproxy climate and sea ice reconstruction of the industrial era at the Western Antarctic Peninsula

CC II

Maria-Elena Vorrath¹, Paola Cárdenas², Lorena Rebolledo^{2,3}, Xiaoxu Shi¹, Juliane Müller^{1,4,5}, Carina B. Lange^{2,6,7}, Gesine Mollenhauer^{1,5}, Praxedes Muñoz⁸, Gema Martínez Méndez¹, Walter Geibert¹, Oliver Esper¹

Manuscript submitted at *Climate of the Past*, 4th May 2020

IMPORTANT NOTE:

I reduced the content of this presentation to the most important results. The full story can be found in the open discussion of the manuscript. doi: https://doi.org/10.5194/cp-2020-63

¹Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

²Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL),

Universidad Austral de Chile, Valdivia, Chile

- ³Instítuto Antártico Chileno (INACH), Punta Arenas, Chile
- ⁴Department of Geosciences, University of Bremen, Germany
- ⁵MARUM Center for Marine Environmental Sciences, University of Bremen, Germany
- ⁶Centro Oceanográfico COPAS Sur-Austral, Universidad de Concepción, Chile
- ⁷Departamento de Oceanografía, Universidad de Concepción, Chile
- ⁸Facultad de Ciencias del Mar, Universidad Católica del Norte, Antofagasta, Chile

Universität Bremen

The Western Antarctic Peninsula (WAP) is a region heavily exposed to recent rapid warming that experienced sea ice retreat recently.

We studied the development of spring sea ice and environmental conditions in the pre-satellite era (about 240 years) using the novel proxy **IPSO₂₅** (Ice proxy for the Southern Ocean C₂₅) in a multiproxy study.

IPSO₂₅ is an organic biomarker derived from sea ice diatoms (Belt et al., 2016).

We reconstructed climate and sea ice conditions at the WAP using the three short marine sediment cores PS97/056-1, PS97/068-2 and PS97/072-2 and compared our findings with satellite sea ice observations, numerical modelled data and ice core data. Dating based on ²¹⁰Pb.

Oceanography				
ACC	Ant. Circumpolar Current			
APCC	Ant. Peninsula Coastal Current			
BSW	Bellingshausen Sea Water			
CDW	Circumpolar Deep Water			
WSW	Weddell Sea Water			
PF	Peninsula Front			

	<u>Islands</u>
JRI	James Ross Island
SSI	South Shetland Islands
EI	Elephant Island

APCC

We analysed compound specific lipid biomarkers and diatom fossils.

Biomarkers	Proxy for	Method
Highly branched isoprenoids (HBIs)	 HBI diene = IPSO₂₅ (Ice proxy for the Southern Ocean C₂₅) = spring sea ice proxy (Belt et al., 2016) HBI Z- and E-trienes = open marine proxies 	Lipid extraction, GC-MS
Glycerol dialkyl glycerol tetraethers	Subsurface ocean temperature based on TEX ^L ₈₆ and OH-GDGTs	Lipid extraction, HPLC
Diatom fossils	Winter sea ice cover (WSI) Summer sea surface temperature (SSST)	Microscope slides, identification, counting, transfer function

+ Satellite data + Numerical modelling + Marine Sediments + Ice Cores

Methods: Concept of the sea ice index PIPSO₂₅

We applied a sea ice index for spring sea ice cover:

a combination of an open marine proxy with the sea ice proxy

(after Vorrath et al., 2019; based on PIP₂₅ from Müller et al, 2011)

Slide 5/9

 ✓ Spring Sea ice biomarkers (IPSO₂₅, PIPSO₂₅) correspond to spring satellite sea ice cover (satSSIC)

 Modelled spring sea ice cover (mSSIC) does not compare well to any of the biomarkers or satellite data

 ✓ Winter sea ice (WSI) derived from diatoms corresponds to winter satellite sea ice cover (satWSIC)

A close look on sea ice from the last 240 years (all cores)

- Α D С В ່ບ g⁻¹ TO(IPSO₂₅ <u>b</u>n PSO₂₅ 0.8 100 0.4 **م**ٰ 90 0.2 "WSI 80 70 60 7U 60 50 mSSI 40 **DP and stacked MSA** 30 1.5 20 anomaly 10 ູ່ and 63 nSSIE 65 66 PS97/056-1 PS97/068-2 PS97/072-2 2000 1960 1920 1880 1840 1800 MSA anomaly Dyer Plateau (DP) Year CE Stacked MSA anomaly
- [™] IPSO₂₅, PIPSO₂₅ and WSI indicate rising sea ice cover towards present

✓ Modelled sea ice, MSA (methanesulphonic acid, Abram et al., 2010), reconstructed and modelled sea ice edges show a decrease of sea ice cover/extent towards present

- = Sea ice biomarker and index are not significant for the quantity of sea ice but more for the quality
- = High seasonal sea ice contrasts promote the growth of both sea ice and open ocean diatoms although there might be less sea ice in total

Conclusion

If the pattern of sea ice and phytoplankton biomarker are similar, sea ice conditions have been favorable for both sea ice diatoms and phytoplankton

Higher biomarker concentrations remain from:

- Melting of sea ice releases nutrients
- Primary production is high at sea ice edges
- Freshwater input stabilizes the water column
- Thinner sea ice allows a higher light penetration and higher sea ice diatom growth

At the Western Anatarctic Peninsula, seasonal sea ice contrasts have significantly increased since the 1930s

References

Abram, N. J., Mulvaney, R., Vimeux, F., Phipps, S. J., Turner, J. and England, M. H.: Evolution of the Southern Annular Mode during the past millennium, Nat. Clim. Chang., 4(7), 564–569, doi:10.1038/nclimate2235, 2014.

Belt, S. T., Smik, L., Brown, T. A., Kim, J. H., Rowland, S. J., Allen, C. S., Gal, J. K., Shin, K. H., Lee, J. I. and Taylor, K. W. R.: Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 1–10, doi:10.1038/ncomms12655, 2016.

Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M. and Lohmann, G.: Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach, Earth Planet. Sci. Lett., 306(3–4), 137–148, doi:10.1016/J.EPSL.2011.04.011, 2011.

Vorrath, M.-E., Müller, J., Esper, O., Mollenhauer, G., Haas, C., Schefuß, E. and Fahl, K.: Highly branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from the Western Antarctic Peninsula, Biogeosciences, 16(15), 2961–2981, doi:10.5194/bg-16-2961-2019, 2019.