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Introduction
Dense Array for North Anatolia (DANA)

• The dataset is obtained from project was performed
by the FaultLab Group in Leeds University

• 72 stations in total
• Examine the anisotropy using the scattering waves

beneath the crust and upper mantle around the
northwestern (NW) part of North Anatolian Fault Zone
(NAFZ)

• Aim of Study
• Understanding the source of seismic anisotropy in the

crust
- LPO or SPO? Which one is dominant in the

study area?
• To map the strength and variation of azimuthal

anisotropy at varying depths
• The role of the NAFZ on the observed crustal

anisotropy signals

(Frederiksen et al., 2015)
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Geological Indications 

(Akbayram et al., 2016)

4 Major Tectonic Regions
• Istanbul-Zonguldak Zone: Mostly comprised by

sedimantary rocks above the magmatic basement.
• Armutlu Peninsula: Sediments and Metasediments with

Cretaceous and Triassic ages, and Eocene volcanic rocks.
• Almacık Region: Magmatic basement with Proterozoic

age and volcanic rocks with Cretaceous age originated
from island arc tectonicsm above them

• Sakarya Zone: Mostly consist of Jurassic – Paleogene
sediments

EGU 2020

(Taylor et al., 2019)

4/15



Previous Studies - Frederiksen et al. (2015)

- RFs analyses using transfer function method
- Sedimentary basin thickness: approx. between 1.5 - 5.5 

km
- Crustal thickness: varies between 30 – 45 km 
- 7 km increasing in Moho boundary from south to north
- Vp/Vs ratio: varies between 1.6 - 1.75  
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Previous Studies- Kahraman et al. (2015)

- H-k Stacking and Inversion of RFs with Neighbourhood
Algorithm

- Significant lateral variations detected in the upper crust (~10
km).

- Western profile suggests a steeply dipping vertical fault
extension for both northern and southern branches.

- NNAFZ can reach into upper mantle, at least 50 km.
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Seismic Anisotropy Lattice Preffered Orientation (SPO) vs. Shape Preffered Orientation (SPO)
• LPO: caused by plastic deformation in the crystal structure and 

originated from mineral alignment
• SPO: associated with the deformation caused by the faulting, 

mechanical deformation 

 D’’ Transition Layer
 Anisotropy caused by topograhy varition between 

Core-Mantle Boundary

 Mantle Anisotropy
 Mostly LPO anisotropy
 Major factor is variation in temperature
 Phase differentiation in depth of 410-520-660 km

 Crustal Anisotropy
 Aligned cracks, foliation in the metamorhic rocks
 Faults and Volcanic activity 

(Long and Becker, 2006)
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Methodology: P-Receiver Functions

(Stein and Wysession, 2003)

𝐻 𝑤 =
ሻ𝑆(𝑤ሻ𝑅(𝑤

ሻ𝑆(𝑤ሻ𝑍(𝑤
=

ሻ𝑅(𝑤

ሻ𝑍(𝑤

H(w): FT of the receiver function
S(w) : FT of the source signal
R(w) : FT of the radial component of earthquake
Z(w) : FT of the vertical component of earthquake

(Ammon, 2006)

Water-Level Deconvolution
• Useful for avoiding division operation using very small numbers in the

denominator parameter
• Trial and error to choose the wl parameter
• Waterlevel parameter can function as high-pass, low pass and notch filter.
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Methodology: Harmonic Decomposition*

*Shiomi & Park (2008), 
Bianchi et al., (2010),  
Audet (2015) 

k=0

k=1

k=2

TRFs

RRFs
Back Azimuthal angle

- k=0 : It provides to information about isotropic medium. Just having radial receiver functions.
- k=1 : It has 2𝜋 periodicity – plunging/dipping symmetry axis anisotropy
- k=2 : It has 4𝜋 periodicity – horizontal symmetry axis anisotropy

Calculation of energy from k=1 and k=2 harmonics, respectively

(Licciardi et al.,  2018)

• If Ek=1 > Ek=2, the dominant anisotropy is caused by the dipping layers or any mineral or structure 
which has plunging axis symmetry

• If Ek=1 < Ek=2, the anisotropy is originated from layering which has the horizontal symmetry axis.

𝐸𝑘=1 = [(𝐵𝑀(𝑖ሻ
2+𝐶𝑀(𝑖ሻ

2ሻ − [(𝐵𝑈 𝑖 2 + 𝐶𝑈 𝑖 2ሻ]

𝐸𝑘=2 = [(𝐷𝑀(𝑖ሻ
2+𝐸𝑀(𝑖ሻ

2ሻ − [(𝐷𝑈 𝑖 2 + 𝐸𝑈 𝑖 2ሻ]
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Synthetic Tests
Thickness (km)  (kg/cm3) Vp (km/s) Vs (km/s) %P %S trend plunge strike dip

2 2.6 4 2 0 0 0 0 0 0

8 2.89 5.3 3.06 0 0 0 0 0 0
10 2.89 5.3 3.06 20 20 110 45 0 0
15 2.89 5.3 3.06 0 0 0 0 0 0

Half-space 3.15 7.3 4.22 0 0 0 0 0 0

• Synthetic waveforms are produced
by RaySUM (Frederiksen and
Bostock, 2000)

• Receiver Functions are calculated
by FuncLab software written by Rob
Porrit

• 0.02 – 1 Hz Bandpass filtering
• A=2, C=0.01
• Taper=%5

(Keleş et al., in prep.)
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Synthetic Tests

(Keleş et al., in prep.)
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Results: Real Data Processing

• 12758 good quality waveforms extracted from 641
teleseismic events

• Epicentral distances and event magnitudes ranging
between 30° and 90° and between 5.2 and 8.5,
respectively.

• 200 s analysis windows starting 20 s prior to the
theoretical P-wave onset.

• Bandpass filtering between 0.02 – 1.25 Hz.
• a=2.2, c=0.01
• Taper= %5

(Keleş et al., in prep.)
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Results

(Keleş et al., in prep.)
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Discussion and Conclusion
• We implemented the harmonic decomposition method inferred from receiver functions on both the

synthetic dataset and real dataset.
• Synthetic tests could recover the true model, which is used to generate synthetic waveform.
• The initial results from real data analyses suggest that the Moho is relatively thick beneath the northern

part.
• Beneath the DB06 station, anisotropic orientation shows the approximately N-S direction for the upper

crustal part.
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Further Processes

• Complete mapping the symmetry axis of anisotropy and energy distribution using k=1,2 harmonics for all depth
ranges.

• SKS splitting measurements to understand the crust-mantle interaction.
• Implementing the RFs inversion using a priori constraints from the harmonic decomposition results.
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