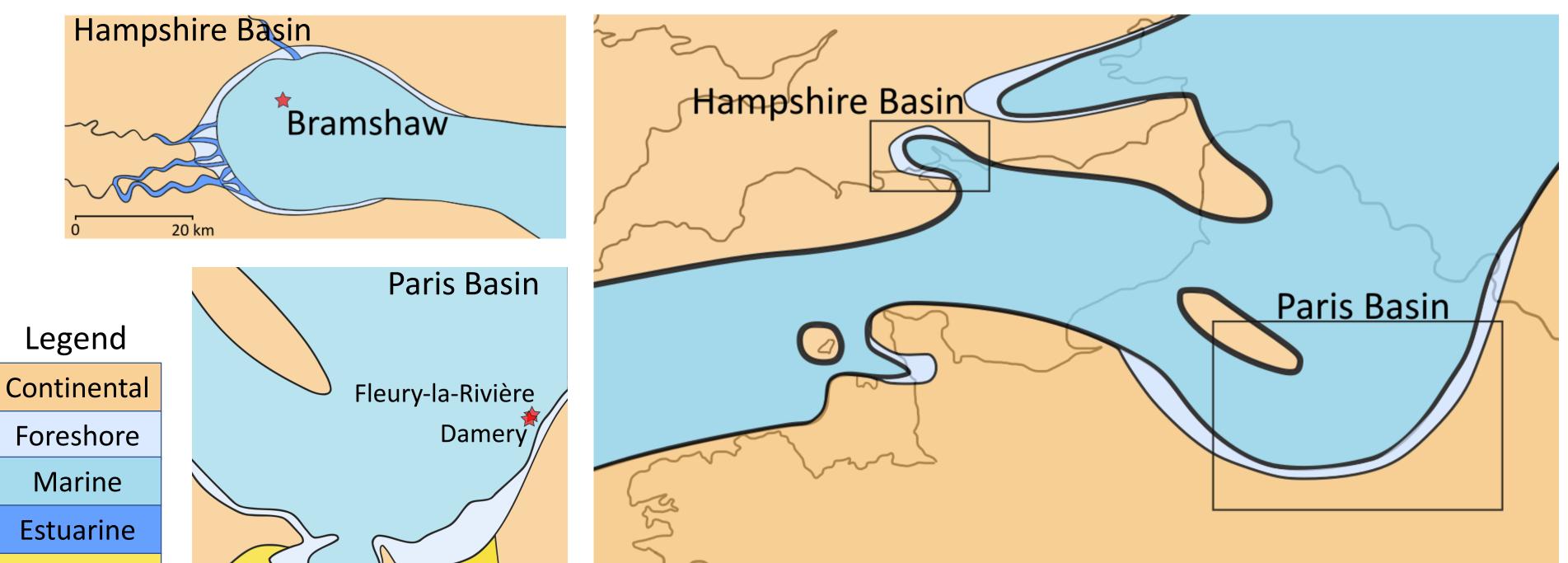
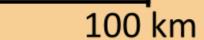
Lutetian conid snails from the Paris and Hampshire Basins as seasonality archives of the middle Eocene Alexander J. CLARK¹, Johan VELLEKOOP^{1,2}, Zita KELEMEN¹ and Robert P. SPEIJER¹


¹Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, B-3001 Heverlee, Belgium ²Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium

The Lutetian Paris and Hampshire Basins

The Lutetian was a period of change, with Earth's climate in transition from greenhouse to icehouse conditions. Tropical conditions reigned in northwest Europe, with high average temperatures and strong periods of rain and drought. In this climate *Conidae* thrived and populated the Paris and Hampshire Basins.


Conid shells are made up of aragonite, from which carbon and isotope samples were obtained and used for oxygen paleotemperature reconstruction.

Three *Eoconus edwardsi* from the Hampshire Basin (Bramshaw) were used and three *Eoconus deperditus* from the

Paris Basin (Fleury-la-Rivière & Damery).

Evaporative

Paleogeography of the Paris and Hampshire Basins, adjusted from Gibbard & Lewin 2003, Huyghe et al. 2015

11 cm

deperditus Eoconus the Damery from locality (DM1)

Differences between the Paris and Hampshire Basins

The latitudinal difference between the Paris and Hampshire Basins is 3°N with a 300 km distance between the localities. Expected differences in temperature and seasonality are therefore minimal. The obtained data confirms this, with seasonality not differing significantly between the two Basins; 9°C vs 10°C.

The obtained temperatures for the Paris Basin are within the range of previous studies from the same localities. A reduced seasonality signal in the Paris Basin conid specimens, 9°C vs 11-13°C, is potentially due to a greater living depth than the previously used gastropods. This is further supported by the lower absolute temperatures between the conids from the Paris Basin and Hampshire Basin.

Eoconus edwardsi from the Bramshaw locality (BR1)

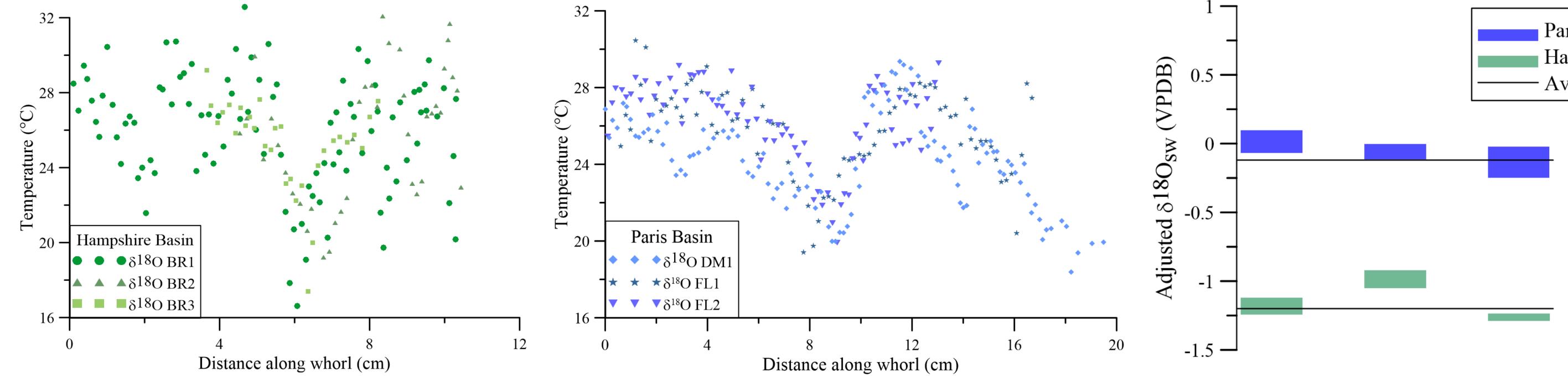
There is something in the water

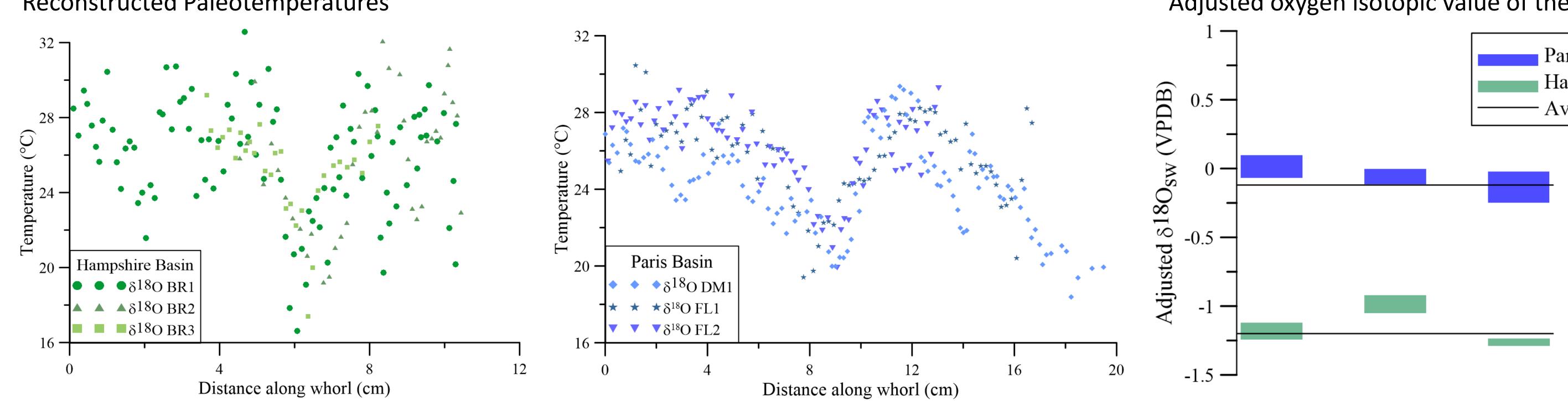
Previously recovered paleotemperature data from the same locality and bed can be used to constrain the obtained data, and estimate ideal temperatures [de Winter et al. 2020]. From this the approximate oxygen isotopic value of the seawater ($\delta^{18}O_{sw}$) can be found.

Hampshire Basin				Paris Basin	n		
	This Study	Andreasson	Purton & Provior 1007		This Study	Andreasson	de Winter et

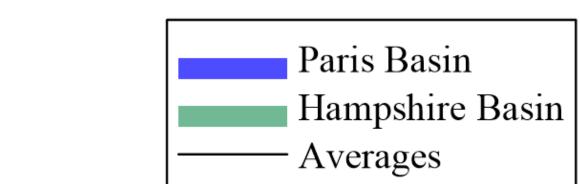
I1 cm

2000 (°C) (°C)	
SpeciesEoconusTurritellaClavilithesedwardsisulciferamacrospira	Species
Assumed -0.68 -1.20 -1.00 $\delta^{18}O_{sw}$ (%)	Assume $\delta^{18}O_{sw}$ (9)
MWT 22 16 21	MWT
MAT 27 22 25	MAT
MST 32 28 35	MST


		2000 (°C)	al. 2020 (°C)
L	oconus perditus	Turritella imbricataria	Campanile giganteum
Assumed $-0.$ $\delta^{18}O_{sw}$ (%)	.59	-1.20	-0.75
MWT 20		14	21
MAT 25		21	26
MST 29		27	32


A significant difference can be seen between the Paris and Hampshire Basins, with a >1‰ in $\delta^{18}O_{sw}$. This highlights the extensive fluvial influence present in the Hampshire Basin. Paleotemperatures obtained must therefore be treated with caution and take this into account, with adjustments needed to the used $\delta^{18}O_{sw}$.

Conclusion


Oxygen isotopes obtained from conid shells show a similar seasonality between the Paris and Hampshire Basins. Greater fluvial influences are inferred in the Hampshire Basin, highlighting the need for caution in the used $\delta^{18}O_{sw}$ in paleotemperature reconstructions.

Reconstructed Paleotemperatures

Adjusted oxygen isotopic value of the seawater

KU LEUVEN

Department of Earth and Environmental Sciences

References:

Andreasson & Schmitz (2000) GSA Bulletin, 112.

Purton & Brasier (1997) *Geology*, 25 (10).

de Winter et al. (2020) Geochem. Geophys. Geosys. 21(4).

Gibbard P.L. & Lewin J. (2003) *Journal of the Geological Society*, 160.

Huyghe et al. (2015) Journal of the Geological Society, 172.

