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Introduction

Motivation

● Homogenization increases consistency of climatological data.

However, it is not clear which residual errors could still be present in

homogenized/adjusted data.

● The problem is particularly important when dealing with daily time

series as they are the basis for many modern climatological studies

(e.g. monitoring, detection and attribution of changes in climate

extremes).

Objective

● To evaluate the uncertainty associated to the adjustment of daily

minimum, TN, and maximum, TX, air temperature series using

Climatol (Guijarro, 2018). We restrict our studies to the case a perfect

detection in order to focus on Climatol’s adjustment algorithm.
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● The Climatol homogenization software (Climatol 3.1.1)

o R package (https://cran.r-project.org/web/packages/climatol/index.html)

o Detection is based on the standard normalized homogeneity test

(SNHT) (Alexandersson, 1986, doi:10.1002/joc.3370060607)

o Adjustment terms are computed from the interpolation with orthogonal

(type II) linear regression model
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Methods and data

Flow-chart of the 

Climatol operation

(from the Climatol guide) 

https://cran.r-project.org/web/packages/climatol/index.html
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● The benchmark TN and TX data sets

o Created in the scope of the INDECIS project (www.indecis.eu).

o Consist of clean data (100 series over the period of 1950-2005)

extracted from an output of KNMI RACMO v2 (driven by MOHC-

HadGEM2-ES), and inhomogeneous data, created by introducing

realistic breaks and errors.

o Cover the area of Southern Sweden.
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(a) The domain of the Southern 

Sweden (inside the red frame) 

(b) Locations of the ‘stations’ (the 

subset of the RACMO grid points, 

shown as black dots)

http://www.indecis.eu/
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● Peculiarities of station signals introduced into clean data

o The introduction of station signals was done by simulating relocations

o The total numbers of break points inserted into TN and TX clean time

series are 258 and 280 respectively

Number of break points per year introduced to clean (a) TN and (b) TX air temperature time series

Distribution of the number of stations/time series with respect to the number of break points in 

one time series: (a) TN, (b) TX 
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● Peculiarities of station signals introduced into clean data

Histograms of the factors (a, b) and 

amplitudes (c, d) of the shifts at the break 

points in TN (a, c) and TX (b, d) raw data 

sets (differences between factors and 

amplitudes are made following HOMER’s 

notations).

 The frequency/count was normalized by 

the total number of the breaks.

 The factors/amplitudes were estimated 

by averaging respective segments of the 

daily error time series

Histograms of standard deviations of the 

introduced daily errors at the inhomogeneity 

segments: (a) TN, (b) TX.
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● Methodology applied to evaluate uncertainty of adjustment

o Inhomogeneous, Homogenized (by means of Climatol) and Clean data sets: 𝑿𝐼, 𝑿𝐻 and 𝑿𝐶

o Each is a collection of time series:    𝑿 = 𝑥𝑖𝑗 , 𝑖 = 1, … ,𝑀 𝑗 = 1,… , 𝑁, where 𝑀 is number 

of stations, 𝑁 is number of time steps/days

o Real/introduced, Detected and Homogenization/residual error time series:

𝑬𝑅 = 𝑿𝐼 − 𝑿𝐶 , 𝑬𝐷 = 𝑿𝐼 − 𝑿𝐻, 𝑬𝐻 = 𝑿𝐻 − 𝑿𝐶 = 𝑬𝑅 − 𝑬𝐷

Examples of time series of 

errors: 𝑬𝑘
𝑅 (a), 𝑬𝑘

𝐷 (b) and 𝑬𝑘
𝐻 (c) 

calculated for 𝑘-th (𝑖 = 𝑘) station 
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● Methodology applied to evaluate uncertainty of adjustment

o ‘Uncertainty’ is ‘any departure from the unachievable ideal’ (Walker et

al., 2003, doi:10.1076/iaij.4.1.5.16466). The uncertainty of homogenization

adjustment is any departure of the model prediction, 𝑿𝐻 , from the

etalon/reference result, 𝑿𝐶

o To evaluate uncertainty usually means to define a width of the error

distribution, which is created by considering the whole credible range

of every uncertain input and parameter of a predicting model

(adjustment algorithm in our case)

o Complex approach was used, quantifying uncertainty on different

levels of detail and time resolution:

 on daily scale, by calculating parameters of error distributions for each day

of some period

 on daily scales, through calculation of a set of metrics

 on yearly scale, through calculation of a set of metrics for some climate

extreme indices
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● Methodology applied to evaluate uncertainty of adjustment

o Metrics for the adjustment evaluation on the daily time scale

 𝑅𝑀𝑆𝐸 (the main metric to evaluate overall adjustment uncertainty; random error evaluation):

𝑅𝑀𝑆𝐸𝑖 =
 
𝑗=1
𝑁𝑖 𝑥𝑖𝑗

𝐻 − 𝑥𝑖𝑗
𝐶 2

𝑁𝑖
, 𝑖 = 1, … ,𝑀

𝑁𝑖 (𝑁𝑖 < 𝑁) is a number of pairs 𝑥𝑖𝑗
𝐶 , 𝑥𝑖𝑗

𝐻 in an adjusted segment/segments

 𝐵 (bias; systematic error evaluation): 𝐵𝑖 =
1

𝑁𝑖
 
𝑗=1
𝑁𝑖 𝑥𝑖𝑗

𝐻 − 𝑥𝑖𝑗
𝐶

 𝐹𝑂𝐸𝑋 (factor of excedance; systematic error evaluation): 𝐹𝑂𝐸𝑋𝑖 =
𝑁
𝑥𝑖𝑗
𝐻>𝑥𝑖𝑗

𝐶

𝑁𝑖
− 0.5 100

𝑁
𝑥𝑖𝑗
𝐻>𝑥𝑖𝑗

𝐶 is a number of pairs 𝑥𝑖𝑗
𝐶 , 𝑥𝑖𝑗

𝐻 in an adjusted segment/segments when 𝑥𝑖𝑗
𝐻 > 𝑥𝑖𝑗

𝐶

 𝑃𝑂𝐷05 and 𝑃𝑂𝐷2 (percentage of days within ±0.5 (±2) ᵒC margin; random error evaluation):

𝑃𝑂𝐷05𝑖 =
𝑁
𝑥𝑖𝑗
𝐻−𝑥𝑖𝑗

𝐶 <0.5

𝑁𝑖
100,    𝑃𝑂𝐷2𝑖 =

𝑁
𝑥𝑖𝑗
𝐻−𝑥𝑖𝑗

𝐶 <2

𝑁𝑖
100

𝑁
𝑥𝑖𝑗
𝐻−𝑥𝑖𝑗

𝐶 ≤𝑎
(a = 0,5 or 2) is a number of pairs 𝑥𝑖𝑗

𝐶 , 𝑥𝑖𝑗
𝐻 in adjusted segments when 𝑥𝑖𝑗

𝐻 − 𝑥𝑖𝑗
𝐶 ≤ 𝑎

 𝑆𝑙𝑜𝑝𝑒𝐷 (difference in slopes ; systematic error evaluation): 𝑆𝑙𝑜𝑝𝑒𝐷𝑖 = 𝑏𝑖 − 1

𝑏𝑖 is a slope of a linear regression model 𝑿𝑖
𝐻 = 𝑎𝑖 + 𝑏𝑖𝑿𝑖

𝐶 (see explanation on the next slide)
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● Methodology applied to evaluate uncertainty of adjustment

Example of scatter diagrams. 

Homogenized 𝑿𝑘
𝐻 (a) and raw 𝑿𝑘

𝐼

(b) daily data are built against 

respective clean values 𝑿𝑘
𝐶.

 Blue lines

𝑿𝑘
𝐻 = 𝑎𝑘 + 𝑏𝑘𝑿𝑘

𝐶 (a) 

𝑿𝑘
𝐼 = 𝑎𝑘 + 𝑏𝑘𝑿𝑘

𝐶 (b) 

are used to calculate 𝑆𝑙𝑜𝑝𝑒𝐷

 𝑆𝑙𝑜𝑝𝑒𝐷 is introduced to

evaluate over/under-estimation

of seasonal amplitude

 Red lines is related to 𝑃𝑂𝐷2

 Black line is ‘true’ predictions

o Quantifying the discrepancies between homogenized and clean data on

the yearly scale

 Extreme indices: (TN) FD, TR, TN10p, TN90p; (TX) ID, SU, TX10p, TX90p (the

thresholds for FD, TR, ID, SU were slightly shifted due to peculiarities of the Southern Sweden

climate)

 Metrics: 𝐵 (systematic error evaluation), 𝑅𝑀𝑆𝐸 (random error evaluation), 𝑇𝑟𝐷 (differences

in the indices linear trends)
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● Methodology applied to evaluate uncertainty of adjustment

o Potential sources of the uncertainty considered

 input data: statistical properties of introduced station signals 𝑬𝑅. The residual

errors 𝑬𝐻 should depend on the introduced errors 𝑬𝑅

 station density (correlation between time series)

 length of the time series

o Samples of Climatol’s adjustment outputs were created based on

replacements and random permutations of time series in 𝑬𝑅

o Uncertainty of Climatol’s adjustment algorithm was evaluated by means

of several case studies (series of numerical experiments), which

complexity was gradually increased
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Results and Discussion

● Case study #1
 10 stations, period 1971-1980 (10 years)

 Time series of 9 stations (black dots in Figure) left clean

 Time series of 10-th station (red dot in Figure) is corrupted: 

1 break point on 01.01.1976

 Inhomogeneous segment 1971-1975 was created by adding 

errors (extracted from 𝑬𝑅) to the clean data

 Total of 185/193 (TN/TX) 5-year segments with different 

statistical properties were found in the error time series 𝑬𝑅

 The identified error segments were shifted to 1971-1975 and 

added to respective clean data of the 10-th time series

 Consequently, 185/193 Climatol adjustment exercises were 

performed, creating the corresponding number of 

homogenized versions of the 10-th series (a sample to 

evaluate error distribution)

 The same disturbed period along with unchanged system of 

reference series allows to obtain statistically reliable and 

justified evaluation of the residual errors

Meteorological stations in set #1 of 

numerical experiments
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● Case study #1

o Distribution of the residual error on day-to-day basis

 In general, dispersion of the

residual errors is less than

dispersion of the introduced ones,

meaning less uncertainty in Climatol

output comparing to raw data

 Significant non-stationarity of the

error distribution in 1-st and 2-nd

moments

 Uncertainty of Climatol’s adjustment

is less in summer months

 For TN data: in winter negative

errors are adjusted slightly better

compared to positive errors

 Non-stationarity of means of the

residual errors is related to

underestimation of the seasonal

cycle amplitude

Mean, P05 and P95 of empirical error

distributions, evaluated for every day of

the disturbed segment: (a) TN, (b) TX.

Green color refers to the introduced

errors, red is for the residual errors.
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● Case study #1

o Temporary averaged distribution of the residual error

Year January July

𝑬𝑅 𝑬𝐻 𝑬𝑅 𝑬𝐻 𝑬𝑅 𝑬𝐻

TN

Mean -0.11 -0.03 -0.08 0.40 -0.13 -0.41

st.d. 2.53 2.15 2.97 2.56 1.85 1.39

P05 -4.00 -3.20 -4.90 -3.60 -3.20 -2.80

P95 3.70 3.20 4.60 4.50 2.90 1.70

P95-P05 7.70 6.40 9.50 8.10 6.10 4.50

TX

Mean -0.00 -0.02 -0.03 0.28 0.04 -0.22

st.d. 1.84 1.64 1.78 1.58 1.67 1.48

P05 -2.70 -2.50 -2.70 -2.00 -2.50 -2.60

P95 2.60 2.30 2.60 2.60 2.50 1.90

P95-P05 5.30 4.80 5.30 4.60 5.00 4.50

TN. Empirical distributions of errors, 

averaged over (a) the whole period, (b) 

January months, (c) July months

Green color refers to the introduced 

errors, red is for the residual errors

TX. Empirical distributions of errors, 

averaged over (a) the whole period, (b) 

January months, (c) July months

Parameters of averaged empirical distributions of errors in TN/TX time series:

introduced 𝑬𝑅 and residual 𝑬𝐻 (all in oC)
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● Case study #1

o Evaluation of homogenization adjustment through the metrics

Boxplots of the metrics, calculated

in Case study #1: (a) TN, (b) TX

 Clearly seen ‘added value’ of

Climatol’s adjustment

 Mean value of 𝑅𝑀𝑆𝐸 represents

an overall/averaged estimate of

the homogenization adjustment

uncertainty

 Other metrics give general

estimation of Climatol’s

performance
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● Case study #1

Relationships between the TN

metrics and the main statistical

properties of the introduced

errors: means/shift amplitudes

(left column) and standard

deviations (right column). Similar

results were obtained for TX
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● Case study #2

 The same 10 stations as in Case study #1, period 1950-2005 (56 years)

 Time series of the 9 stations left clean. Time series of the 10-th station is corrupted: multiple break points 

are allowed with their arbitrary positions

 94/96 (TN/TX) different variants/realizations of the 10-th corrupted series were created by adding the 

station signals from 𝑬𝑅 to the clean data

 Consequently, 94/96 Climatol

adjustment exercises were 

performed creating the

corresponding number 

of homogenized versions of 

the 10-th series (a sample to 

evaluate residual error)

Boxplots of the metrics,

calculated in Case study #2

(daily scale): (a) TN, (b) TX
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● Case study #2

Boxplots of the metrics, calculated based on the yearly series of the climate 

extremes indices in Case study #2: (a) TN, (b) TX
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● Case study #3

 The original case, initially created in the frame of the INDECIS project: 100 stations, period 1950-2005

 Compared to the previous case, every station signal of 𝑬𝑅 will be removed in different local conditions

Boxplots of the metrics, 

calculated in Case study 

#3 (daily scale): (a) TN, 

(b) TX
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● Case study #3

Boxplots of the metrics calculated based on the yearly series of the climate 

extremes indices in Case study #3: (a) TN, (b) TX
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 in order to study how local peculiarities (e.g. subset of neighboring stations chosen to create a 

composite reference series) influence removing of station signals we performed calculations with 100 

random permutations (without repetition) of the introduced error time series in 𝑬𝑅

● Case study #3

𝐵
oC

𝐹𝑂𝐸𝑋
%

𝑆𝑙𝑜𝑝𝑒𝐷 𝑅𝑀𝑆𝐸
oC

𝑃𝑂𝐷05
%

𝑃𝑂𝐷2
%

𝑿𝐻 𝑿𝐼 𝑿𝐻 𝑿𝐼 𝑿𝐻 𝑿𝐼 𝑿𝐻 𝑿𝐼 𝑿𝐻 𝑿𝐼 𝑿𝐻 𝑿𝐼

TN

mean

max 0.09 -0.11 -1 -6 -0.09 0.01 2.25 2.44 24 25 75 71

aver. 0.06 -0.11 -2 -6 -0.10 ~0.00 2.18 2.44 23 25 73 71

min 0.04 -0.11 -3 -6 -0.12 0.00 2.13 2.44 22 25 71 71

IQR

max 0.13 0.86 4 22 0.11 0.05 0.64 0.72 10 10 16 15

aver. 0.09 0.86 3 22 0.08 0.04 0.50 0.72 8 10 13 15

min 0.06 0.86 2 22 0.05 0.03 0.39 0.72 7 10 10 15

TX

mean

max 0.05 -0.02 2 -5 -0.04 ~0.00 1.65 1.75 35 33 86 83

aver. 0.03 -0.02 1 -5 -0.05 0.00 1.61 1.75 33 33 85 83

min 0.01 -0.02 0 -5 -0.06 ~-0.0 1.59 1.75 32 33 84 83

IQR

max 0.10 0.64 7 25 0.07 0.06 0.61 0.65 15 13 13 12

aver. 0.07 0.64 5 25 0.05 0.04 0.54 0.65 12 13 10 12

min 0.05 0.64 4 25 0.03 0.03 0.49 0.65 9 13 9 12

Parameter variability of the metrics empirical distributions due to 100 random permutations of the 

station signals in 𝑬𝑅. Case study #3, daily scale
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● Case study #4
 The purpose of Case study #4 was to investigate other sources of the residual errors, i.e. length of time

series and station density

 It consolidates 56 different cases: combinations of 7 periods (1950-2005, 1954-2005, …, 1974-2005)

and 8 cases of station densities (see figure below)

 The station selection for each of the eight cases shown in the figure was not random: while excluding 10 

stations on every step, we tried to preserve the structure of break point system (their frequency, the 

distributions of shift amplitudes/factors 

etc.; see the next slide)

 Calculations with 100 random 

permutations in the station signals 

were performed in each of  56 cases 

(5600 homogenization exercises were 

performed was for each of the two 

climate variables).

Spatial distribution of the stations in Case

study #4
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● Case study #4

The structure of the

break system in Case

study #4 (the period of

1950-2005): histograms

of shift factors (TN data)

The structure of the

break system in Case

study #4 (the period of

1950-2005): the

distribution of the number

of stations/time series

with respect to the

number of breaks in one

time series (TN data)
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● Case study #4

Boxplots of the metric,

calculated for TN

adjusted (a) and raw (b)

time series in Case study

#4. Similar results were

obtained for TX
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● Case study #4

Estimated average correlation coefficients for each of the 56 considered cases for TN: (a, c) the raw

data; (b, d) clean data. Top panel (a, b) represents mean values of corresponding correlation matrices,

bottom panel (c, d) contains mean max values (averaged over a set of maximal correlation coefficients

obtained for each time series). Year cycles were removed before calculations similarly to (Vincent et al.,

2018, doi:10.1002/joc.5203)

 Probable reason for the absence of any noticeable relation between time series length/station density 

and the metric values is good correlation between time series in 𝑿𝐼 and 𝑿𝐶
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● Climatol’s adjustment uncertainty on day-to-day scale depends on seasons. In summer

months, the residual errors of daily TN and TX temperature values belong to the intervals,

(𝑃05, 𝑃95), −2.8, 1.7 and −2.6, 1.9 ( 𝑜𝐶) respectively. In winter months, the ranges of the

errors for TN/TX are larger −3.6, 4.5 / −2.0, 2.6 ( 𝑜𝐶).

● Overall adjustment uncertainty (averaged over all seasons) can be evaluated as the error

ranges, (𝑃05, 𝑃95), of −3.2, 3.2 / −2.5, 2.3 ( 𝑜𝐶). In terms of standard deviations of the

residual error distributions, the overall uncertainty can be estimated as 2.15/1.64 ( 𝑜𝐶).

● The latter estimates agree well with mean values of 𝑅𝑀𝑆𝐸, calculated based on adjusted

and clean data.

● Non-stationarity of means of the residual errors can also be reported. It is related to

underestimation of an amplitude of the seasonal cycle. Metric 𝑆𝑙𝑜𝑝𝑒𝐷 provides additional

evidence for such conclusion.

● The underestimation of the temperature seasonal cycle might be reflected in yearly time

series of climate extremes indices with the absolute thresholds, like ID and TR for TN or FD

and SU for TX. However, its influence on linear trends in these yearly time series is not so

noticeable.

● Climatol removes very well systematic errors related to jumps in the mean. The ability of 

Climatol to remove systematic bias is valid for shifts of any magnitude and does not depend on 

the number of break points in the raw time series.
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