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Introduction

Introduction

Motivation

Homogenization increases consistency of climatological data.
However, it is not clear which residual errors could still be present in
homogenized/adjusted data.

The problem is particularly important when dealing with daily time
series as they are the basis for many modern climatological studies
(e.g. monitoring, detection and attribution of changes in climate
extremes).

Objective

To evaluate the uncertainty associated to the adjustment of daily
minimum, TN, and maximum, TX, air temperature series using
Climatol (Guijarro, 2018). We restrict our studies to the case a perfect
detection in order to focus on Climatol’s adjustment algorithm.
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Methods and data

Methods and data
e The Climatol homogenization software (Climatol 3.1.1)

R package (https://cran.r—proiect.orq/web/packaqes/climatol/index.html)
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Detection is based on the standard normalized homogeneity test
(SNHT) (Alexandersson, 1986, doi:10.1002/joc.3370060607)

Adjustment terms are computed from the interpolation with orthogonal
(type II) linear regression model

Flow-chart of the
Climatol operation
(from the Climatol guide)
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Methods and data
e The benchmark TN and TX data sets
o Created in the scope of the INDECIS project (www.indecis.eu).

o Consist of clean data (100 series over the period of 1950-2005)
extracted from an output of KNMI RACMO v2 (driven by MOHC-
HadGEMZ2-ES), and inhomogeneous data, created by introducing
realistic breaks and errors.

o Cover the area of Southern Sweden.
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Methods and data

e Peculiarities of station signals introduced into clean data
o The introduction of station signals was done by simulating relocations

o The total numbers of break points inserted into TN and TX clean time
series are 258 and 280 respectively

o )
kR sl oo
- 195;\|ur1:1ber of break points per year introduced to clean (&) TN and (b) TX air temperature time series
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Distribution of the number of stations/time series with respect to the number of break points in
one time series: (a) TN, (b) TX
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e Peculiarities of station signals introduced into clean data
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Histograms of the factors (a, b) and
amplitudes (c, d) of the shifts at the break
points in TN (a, ¢) and TX (b, d) raw data

sets (differences between factors and
amplitudes are made following HOMER’s
notations).

» The frequency/count was normalized by
the total number of the breaks.

» The factors/amplitudes were estimated
by averaging respective segments of the
daily error time series

Histograms of standard deviations of the
introduced daily errors at the inhomogeneity
segments: (a) TN, (b) TX.



Methods and data
e Methodology applied to evaluate uncertainty of adjustment

o Inhomogeneous, Homogenized (by means of Climatol) and Clean data sets: XI, X" and X¢

o Eachis a collection of time series: X = {xij}, i=1,...,Mj=1,..,N,where M is number
of stations, N is number of time steps/days
o Reall/introduced, Detected and Homogenization/residual error time series:

ER=XI—XC ED=XI—XH EH=XH—XC:ER—ED
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Methods and data

e Methodology applied to evaluate uncertainty of adjustment

o ‘Uncertainty’ is ‘any departure from the unachievable ideal’ (Walker et
al., 2003, doi:10.1076/iaij.4.1.5.16466). The uncertainty of homogenization
adjustment is any departure of the model prediction, X, from the
etalon/reference result, X¢

o To evaluate uncertainty usually means to define a width of the error
distribution, which is created by considering the whole credible range
of every uncertain input and parameter of a predicting model
(adjustment algorithm in our case)

o Complex approach was used, quantifying uncertainty on different
levels of detail and time resolution:

= on daily scale, by calculating parameters of error distributions for each day
of some period

= on daily scales, through calculation of a set of metrics

= on yearly scale, through calculation of a set of metrics for some climate
extreme indices
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Methods and data

e Methodology applied to evaluate uncertainty of adjustment
o Metrics for the adjustment evaluation on the daily time scale
» RMSE (the main metric to evaluate overall adjustment uncertainty; random error evaluation):
Ni (. H _ .C)?
Zj=l1(xij — X
N;

N; (N; < N) is a number of pairs (x{;, x{1) in an adjusted segment/segments

RMSE; = , i=1.,M

. . . 1 N
» B (bias; systematic error evaluation): B; = EZ];1(xg — xlC])

N/ H_ . c

»  FOEX (factor of excedance; systematic error evaluation): FOEX; = <(x+>x”) — 0.5> 100

: : cC LHY: : H C
N(x{§>xg-) is a number of pairs (xf;, x{]) in an adjusted segment/segments when x/; > x;

= PODO05 and POD2 (percentage of days within £0.5 (+2) °C margin; random error evaluation):

N H_ C N H_ C
xU—xU|<05 xl—xl]|<2

100

PODO5; = 100, POD2; =

i i

¢ xg) in adjusted segments when |xg - x5| sa

(a = 0,5 or 2) is a number of pairs (xf;,

N nu_.c
xfj-xf|<a

= SlopeD (difference in slopes ; systematic error evaluation): SlopeD; = b; — 1

b; is a slope of a linear regression model X = a; + b;X¢ (see explanation on the next slide)
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Methods and data

e Methodology applied to evaluate uncertainty of adjustment

Example of scatter diagrams.
Homogenized X¥ (a) and raw X%,
(b) daily data are built against
respective clean values X§.

_a)

= Blue lines
XII;I = ag + kaﬁ (a.)
X’( = ag + kag (b)
are used to calculate SlopeD

HOMOGENIZED data, °C
INHOMOGENEOUS data, °C

» SlopeD is introduced to
evaluate over/under-estimation
of seasonal amplitude

30 20 40 o 10 20 45 B0 46 0 4B 20 *» Red lines is related to POD2
CLEAN data, °C CLEAN data, °C . . , ..
» Black line is ‘true’ predictions

o Quantifying the discrepancies between homogenized and clean data on
the yearly scale

= Extreme indices: (TN) FD, TR, TN10p, TN9Op; (TX) ID, SU, TX10p, TX90p (the
thresholds for FD, TR, ID, SU were slightly shifted due to peculiarities of the Southern Sweden
climate)

= Metrics: B (systematic error evaluation), RMSE (random error evaluation), TrD (differences

N0 in the indices linear trends) 10



Methods and data

e Methodology applied to evaluate uncertainty of adjustment

o Potential sources of the uncertainty considered

= input data: statistical properties of introduced station signals E®. The residual
errors Ef should depend on the introduced errors ER

= station density (correlation between time series)
= length of the time series

o Samples of Climatol's adjustment outputs were created based on
replacements and random permutations of time series in E

o Uncertainty of Climatol’s adjustment algorithm was evaluated by means
of several case studies (series of numerical experiments), which
complexity was gradually increased

11
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Results/Discussion

Results and Discussion
e Case study #1

= 10 stations, period 1971-1980 (10 years) / \)
= Time series of 9 stations (black dots in Figure) left clean o
» Time series of 10-th station (red dot in Figure) is corrupted: s A j

1 break point on 01.01.1976

» Inhomogeneous segment 1971-1975 was created by adding
errors (extracted from E®) to the clean data

» Total of 185/193 (TN/TX) 5-year segments with different
statistical properties were found in the error time series ER

58°N -

57°N A

Latitude
\\x\“
Y

3 N
» The identified error segments were shifted to 1971-1975 and ] ©
added to respective clean data of the 10-th time series %N q/;h \/J_JN
= Consequently, 185/193 Climatol adjustment exercises were D Wi aii—
performed, creating the corresponding number of 12 " ongitude 18

homogenized versions of the 10-th series (a sample to

evaluate error distribution) Meteorological stations in set #1 of

_ _ _ numerical experiments
» The same disturbed period along with unchanged system of

reference series allows to obtain statistically reliable and
justified evaluation of the residual errors
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e Case study #1
o Distribution of the residual error on day-to-day basis

Results/Discussion

» |n general, dispersion of the
residual errors is less than
dispersion of the introduced ones,
meaning less uncertainty in Climatol
output comparing to raw data

» Significant non-stationarity of the

error distribution in 1-st and 2-nd * |} UL 1 b, L ki ..‘f b it ..\| i
moment « [l i 'm‘ i e """»l -Mau P ("!”*l A 1 } "\“.”" i ‘h
oments r“41..f| w* i u\ j\ l’ﬁ i “ ft‘ rl HH
= Uncertainty of Climatol’s adjustment * pos | | | \
Is less in summer months A
= For TN data: in winter negative e . T e e e

errors are adjusted slightly better 5. b)
compared to positive errors ] {

= Non-stationarity of means of the . - \
residual errors is related to i ﬂG!‘.:l}‘.‘.1'{:.-%-‘”,,!‘-“m J q.:j ,,,m 4
. ) TR L 1 m\ f
underestimation of the seasonal "

cycle amplitude o L, , =k
2- SRR, A L i R . LA
Mean, P05 and P95 of empirical error : I*q"“.' """'-‘&*@‘-:»'HIAZi";,;""""’"" 1 ";ﬂl""' !’.:’l:“~,-\‘,\U;"*’f’*"" ?'f‘w 'l”‘“-*I“.r,_,':'u\‘;::..:"""' ““‘i“ l'r | WI!‘T'T-‘J.;',"J!".*W i ""r]'w.,,i|.".1|r..ﬁ‘"" !’f
distributions, evaluated for every day of 005 il L 18 | | bl " I
the disturbed segment: (@) TN, (b) TX.
Green color refers to the introduced -
errors, red is for the residual errors. 071 102 W 1075 13 1976
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e Case study #1
o Temporary averaged distribution of the residual error

-a)

Results/Discussion
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Parameters of averaged empirical distributions of errors in TN/TX time series:
introduced ER and residual EF (all in °C)

Year January July
ER EH ER EH ER EH
Mean -0.11 -0.03 -0.08 0.40 -0.13 -0.41
st.d. 2.53 2.15 2.97 2.56 1.85 1.39
TN P05 -4.00 -3.20 -4.90 -3.60 -3.20 -2.80
P95 3.70 3.20 4.60 4.50 2.90 1.70
P95-P05 7.70 6.40 9.50 8.10 6.10 4.50
Mean -0.00 -0.02 -0.03 0.28 0.04 -0.22
st.d. 1.84 1.64 1.78 1.58 1.67 1.48
TX P05 -2.70 -2.50 -2.70 -2.00 -2.50 -2.60
P95 2.60 2.30 2.60 2.60 2.50 1.90
P95-P05 5.30 4.80 5.30 4.60 5.00 4.50 14
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e Case study #1
o Evaluation of homogenization adjustment through the metrics
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» Clearly seen ‘added value’ of
Climatol’s adjustment

» Mean value of RMSE represents
an overall/averaged estimate of
the homogenization adjustment
uncertainty

= Other metrics give general
estimation of Climatol’s
performance

Boxplots of the metrics, calculated
in Case study #1: (a) TN, (b) TX
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e Case study #1
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e Case study #2
» The same 10 stations as in Case study #1, period 1950-2005 (56 years)

Results/Discussion

» Time series of the 9 stations left clean. Time series of the 10-th station is corrupted: multiple break points
are allowed with their arbitrary positions

= 94/96 (TN/TX) different variants/realizations of the 10-th corrupted series were created by adding the
station signals from EF to the clean data

= Consequently, 94/96 Climatol a)ﬁu_s RIMSE |::1)M_-B RIMSE
adjustment exercises were - ' o
performed creating the 257 _® . | T 287 .
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e Case study #2

a) B(FD)
20- :
w 10- é;
& 0-
S 0- == —
20-
a30- i
hom raww
B (TR)

TG~ .
50 - o
= 3
D25 - -1

o- E !
hu:m ralw

B {TN10o)

20- 1

10- i
g L
o == S
-10- 1 _.n_
hom raw

B (TNS90p)

20- .

# 10 *

-
LMl
(]

hom raww

RIMSE (FD)
30- ¥
m 20 p——
@
===
I] - 1 _I_
hom raww
RMSE (TR)
60-
%dﬂ 7 :
[ —_—
20-
== E5
I] - 1 1
hom raw
RIMSE (TN10p)
20
# 4
10-
1
. = =5
h |:|:m ralw
RIMSE (TNS0p)
20- .
# 10- X _l_
== E=
0- . ==
hom raww

TrD (FD)

Daysidecade
=
M
11

10-

-0 - ]

Daysidecade

-20 - 1 .I
hom raw

TrD (TN10p)

£

A

Widecade
B R o

h |:|:m ralw
TrD (TNS0p)
2.5-

—_—
w 00 = ==
H25- —
S.50- 2
2.

-7.5-

!
hom raw

Results/Discussion

b) B(D)
20-
10-
g o == =5
D-'ﬂ]' )
-20-
-3 - 1 1
hom raw
B (SU)
Ta-
50-
5
DZE-
o- == E5
hn:m ralw
B (TX10p)
20-
= 107 T
0- == ==
-10- 1 1
hom raw
B (TX90p)
20-
#10-
- == ==
hn:m ralw

RMSE (/D)
30-
[] 20-
)
= 0- 3
== ==
u - 1 _I_
hom raw
RMSE (SU)
B0~
w
&40
|
20- -
,. == ==
hu:m ralw
RMSE (TX10p)
20
#
10-
e ==
hn:m ralw
RMSE (TX90p)
20-
*
10

==

hom raw

0

TrD (ID)
o
25
[a}
& —1_
FR R ==
g N
-5 - 1 1
hom raw
TrD (SU)
10-
= .
30 == ==
E —1
2 40-
m
[
-20 - 1 1
hom raw
TrD (TX10p)
2- ——
fo =5 B9
m -
5. -
+
_4.
hu:m ralw
TrD (TX90p)
25-
g0 5= 59
m-25-
[}
E.50-
-T.5-
hn:m raww

Boxplots of the metrics, calculated based on the yearly series of the climate
extremes indices in Case study #2: (a) TN, (b) TX
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e Case study #3
= The original case, initially created in the frame of the INDECIS project: 100 stations, period 1950-2005

Results/Discussion

= Compared to the previous case, every station signal of ER will be removed in different local conditions
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e Case study #3
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e Case study #3

Results/Discussion

» in order to study how local peculiarities (e.g. subset of neighboring stations chosen to create a
composite reference series) influence removing of station signals we performed calculations with 100
random permutations (without repetition) of the introduced error time series in ER

Parameter variability of the metrics empirical distributions due to 100 random permutations of the

station signals in ER. Case study #3, daily scale

B FOEX SlopeD RMSE PODO5 POD2
°C % °C % %
XxH X! XxH X! XH X! XH X! XxH X! XxH X!
max 0.09 -0.11 -1 -6 -0.09 0.01 2.25 2.44 24 25 75 71
mean aver. 0.06 -0.11 -2 -6 -0.10 ~0.00 2.18 2.44 23 25 73 71
min 0.04 -0.11 -3 -6 -0.12 0.00 2.13 2.44 22 25 71 71
™ max 0.13 0.86 4 22 0.11 0.05 0.64 0.72 10 10 16 15
IQR aver. 0.09 0.86 3 22 0.08 0.04 0.50 0.72 8 10 13 15
min 0.06 0.86 2 22 0.05 0.03 0.39 0.72 7 10 10 15
max 0.05 -0.02 2 -5 -0.04 ~0.00 1.65 1.75 35 33 86 83
mean aver. 0.03 -0.02 1 -5 -0.05 0.00 1.61 1.75 33 33 85 83
min 0.01 -0.02 0 -5 -0.06 ~-0.0 1.59 1.75 32 33 84 83
™ max 0.10 0.64 7 25 0.07 0.06 0.61 0.65 15 13 13 12
IQR aver. 0.07 0.64 5 25 0.05 0.04 0.54 0.65 12 13 10 12
min 0.05 0.64 4 25 0.03 0.03 0.49 0.65 9 13 9 12
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e Case study #4

» The purpose of Case study #4 was to investigate other sources of the residual errors, i.e. length of time
series and station density

» |t consolidates 56 different cases: combinations of 7 periods (1950-2005, 1954-2005, ..., 1974-2005)
and 8 cases of station densities (see figure below)

» The station selection for each of the eight cases shown in the figure was not random: while excluding 10
stations on every step, we tried to preserve the structure of break point system (their frequency, the
distributions of shift amplitudes/factors

Results/Discussion

100 stations 90 stations 80 stations 70 stations

etC . ; See the next SI ide) Density: ~44xd4 sq km/stn Density: ~46x48 sq km/stn Density: ~49x49 sq km/stn Density: ~53x53 sq km/stn
Mean rl'ﬂll'l dist.: 23.8 km ‘ e Mean ;’l‘l\ﬂ dist.: 27.11 km‘l aon Mean I‘T\IH dist.: 31.3 km : i Mean ;’l‘lH’I dist.: 36.64 kml‘
= Calculations with 100 random N o ; [ N
permutations in the station signals RN N PR
0°N e o 60°N- A T 0 aeN- A 0 T 0 BOPN- A . 0

were performed in each of 56 cases RO

(5600 homogenization exercises were =" | 4 T S -
performed was for each of the two ' i

climate variables).

< o0 ki AN PN m— 4 20 ke 4 :
12°E 16°E 18°E 12°E 14°E 16°E 18°E 12°E E 16°E 18°E 12°E 16°E 18°E
Lengitude Longitude Lengitude Lengitude
60 stations 50 stations 40 stations 30 stations
Density: ~57%57 sq km/stn Density: ~62x562 sq km/stn Density: ~69x69 sq km/stn Density: ~80x80 sq km/stn
Mean min dist.. 41.9 km Mean min dist.: 49.45 km Mean min dist.; 58.16 km Mean min dist.; 76.37 km
62°N - H F 627N - H ! 629N - i F 627N - H F
L ~ o N L
FN- T oL T SN f . 81N -
4 i b L is i i
Y 2 - N h
0 i .
60N - . \". G0N - r,". . L S 60VN - L
¢ . A I . 4 ¢ s
m b i » i " [
- 59N . a0t T 58N P T ° 59N
2 | 2 | - 3 |
= . =1 = = i
3 [ECUE > 1 - 58N * o1 3 580N
i e 1 &
. S| ' [
B ; b
57N- 4 Y
T
Spatial distribution of the stations in Case 3 AR
56°N- - LY
oy — -} 200 ke

StUdy #4 G2E 4E 18E 18E GZE 4 16 18E GZE 14E WEE 18E G3E 4E 18E 18E

Longitude Longitude Longitude Longitude

22



e Case study #4

The structure of the
break system in Case
study #4 (the period of
1950-2005): the
distribution of the number
of stations/time series
with respect to the
number of breaks in one
time series (TN data)

The structure of the
break system in Case
study #4 (the period of
1950-2005): histograms
of shift factors (TN data)
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e Case study #4

= Probable reason for the absence of any noticeable relation between time series length/station density
and the metric values is good correlation between time series in X! and X¢

a} Raw data. Mean comelation coefficient b} Clean data. Mean comelation coefficient
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Estimated average correlation coefficients for each of the 56 considered cases for TN: (a, c) the raw
data; (b, d) clean data. Top panel (a, b) represents mean values of corresponding correlation matrices,
bottom panel (c, d) contains mean max values (averaged over a set of maximal correlation coefficients

obtained for each time series). Year cycles were removed before calculations similarly to (Vincent et al.,
2018, do0i:10.1002/joc.5203)
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Conclusion

Conclusion remarks

e Climatol's adjustment uncertainty on day-to-day scale depends on seasons. In summer
months, the residual errors of daily TN and TX temperature values belong to the intervals,
(P05, P95), (—2.8,1.7) and (—2.6,1.9) ( °C) respectively. In winter months, the ranges of the

errors for TN/TX are larger (—3.6,4.5)/(—2.0,2.6) ( °C).

e Overall adjustment uncertainty (averaged over all seasons) can be evaluated as the error
ranges, (P05,P95), of (—3.2,3.2)/(—2.5,2.3) (°C). In terms of standard deviations of the
residual error distributions, the overall uncertainty can be estimated as 2.15/1.64 ( °C).

e The latter estimates agree well with mean values of RMSE, calculated based on adjusted
and clean data.

e Non-stationarity of means of the residual errors can also be reported. It is related to
underestimation of an amplitude of the seasonal cycle. Metric SlopeD provides additional
evidence for such conclusion.

e The underestimation of the temperature seasonal cycle might be reflected in yearly time
series of climate extremes indices with the absolute thresholds, like ID and TR for TN or FD
and SU for TX. However, its influence on linear trends in these yearly time series is not so
noticeable.

e Climatol removes very well systematic errors related to jumps in the mean. The ability of
Climatol to remove systematic bias is valid for shifts of any magnitude and does not depend on
the number of break points in the raw time series.
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