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Elastic Radiative Transfer Equations
The coupled radiative transfer equations for 
P- and S-waves in 2-D (Sens-Schönfelder et al. ,2009)

Spatially Variable Heterogeneity 
and Attenuation

The right hand are rewritten as
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For numerically solving the radiative transfer equations we use 

the Monte Carlo method. The idea of the Monte Carlo method 

is based on the concept of wave packets or seismic phonons 

that carry in-formation about the wave energy but neglect 

phase information.

Figure 1.Flowchart of 
Monte Carlo simulation



Modelling with Spatially Variable 
Heterogeneity and Attenuation

Figure 2. Illustrations of the model setup. 
(a) Homogeneous model with background ε= 
0.05 and QP

−1= 0, QS
−1= 0 (simulation 1) and (b) 

Anomalous model with ε= 0.09(simulation 2) or 
intrinsic quality factors QP

−1= 0.17,QS
−1= 0.1 

inside the anomaly (simulation 3). The 
background velocity of all models is Vp= 6km/s, 
Vs= 3.46km/s. The background density isρ= 
2.7g/cc. The correlation length is a= 0.3km in all 
simulations. The red star indicates the source 
and three white triangles indicate receivers that 
are located before, within and behind the 
anomaly as seen from the source

(a) Homogeneous (b) Anomalous model 



Scattering Anomaly Simulation

Figure 3.Snapshots (2s−5s) of the simulated wavefield in (a) the uniform medium and (b) the 
scattering anomaly medium. (c) differences between (a) and(b). Both the P energy and the S 
energy are recorded

(a) uniform medium (b) medium with scattering anomaly (c) intensity differences

Figure 4.Envelopes at three receivers for the 
uniform medium (dotted) and the scattering 
anomaly medium (solid). The red, blue and 
green curves indicate the energy that arrives 
at the receiver A, B and C respectively. 

The source emits pure P-wave energy



Scattering Anomaly Simulation

Figure 5.Snapshots (2s−5s) of the simulated wavefield in (a) the uniform medium and (b) the 
scattering anomaly medium. (c) differences between (a) and(b). Both the P energy and the S 
energy are recorded

(a) uniform medium (b) medium with scattering anomaly (c) intensity differences

Figure 6.Envelopes at three receivers for the 
uniform medium (dotted) and the scattering 
anomaly medium (solid). The red, blue and 
green curves indicate the energy that arrives 
at the receiver A, B and C respectively. 

The source emits pure S-wave energy



Intrinsic Attenuation Anomaly Simulation

Figure 7.Snapshots (2s−5s) of the 
simulated energy field in the model 
with the anomaly in intrinsic 
attenuation. The intrinsic quality 
factors QP

−1= 0.17,QS
−1= 0.1, 

respectively. 

The source is (a) P-wave and (b) S-
wave. Both the P energy and the S 
energy are recorded.

(a) P source (B) S source



Modelling the Specific Intensity

Figure 8.Snapshots (2s,4s) 
of the specific intensity 
IY X(r, n, t) for propagation 
directions n= 45◦ and n= 
90◦ in a uniform medium 
with background ε= 0.05. 
The red point indicates the 
source. Note that the 
maximum of the color scale 
for is clipped to avoid the 
high values of the ballistic 
energy.



Traveltime Sensitivity Kernels
The travel time shift for 
spatially distributed changes of 
P- and S-wave velocities:

Figure 9. Traveltime 
sensitivity kernels in uniform 
model at different lapse 
times.
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Decorrelation Sensitivity Kernels
The decorrelation of the two wavefields 
recorded before and after the perturbation 
of the mechanical properties

Figure 10. Decorrelation sensitivity kernels in uniform 
model at different lapse times. 



Scattering Sensitivity Kernels

Figure 11. Scattering sensitivity kernels in uniform 
model at different lapse times. 

The perturbation of intensity in thecoda 
wave is written by


