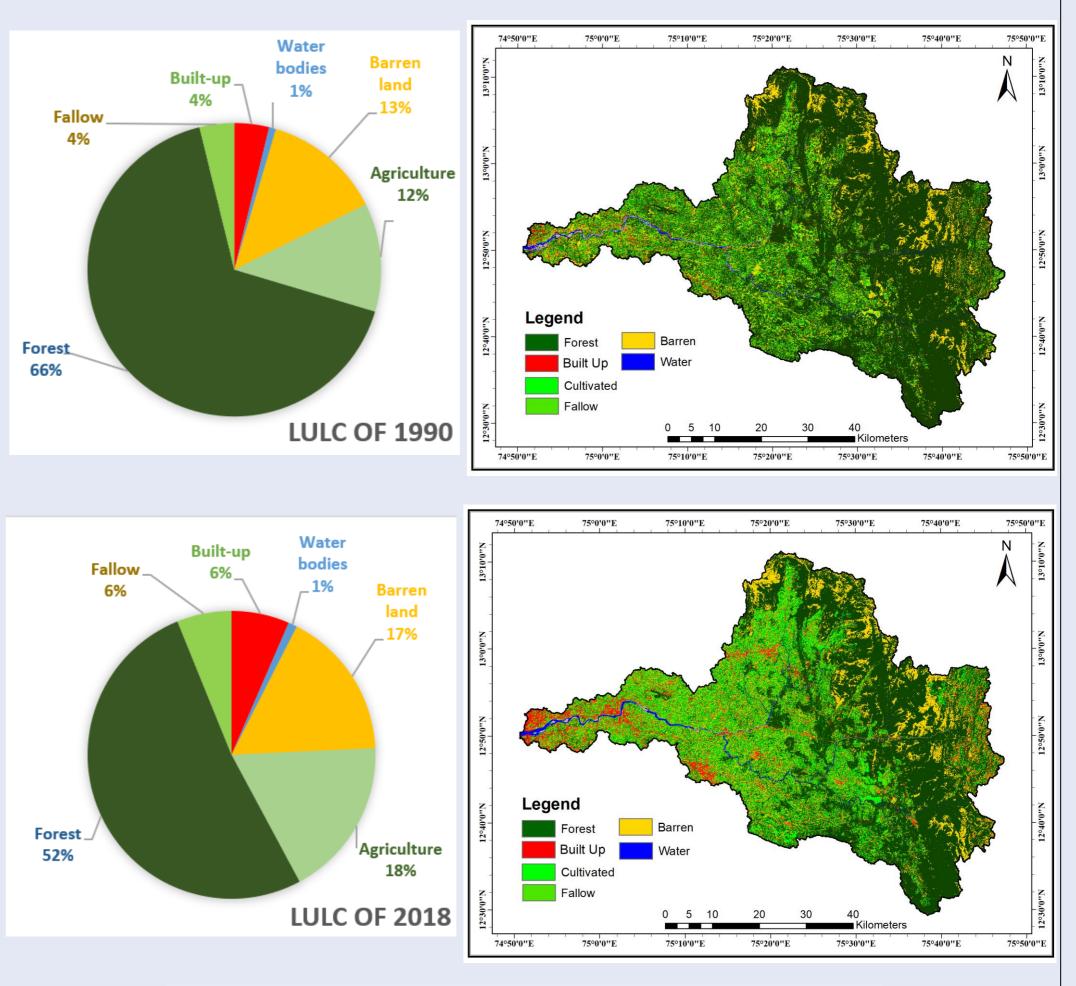


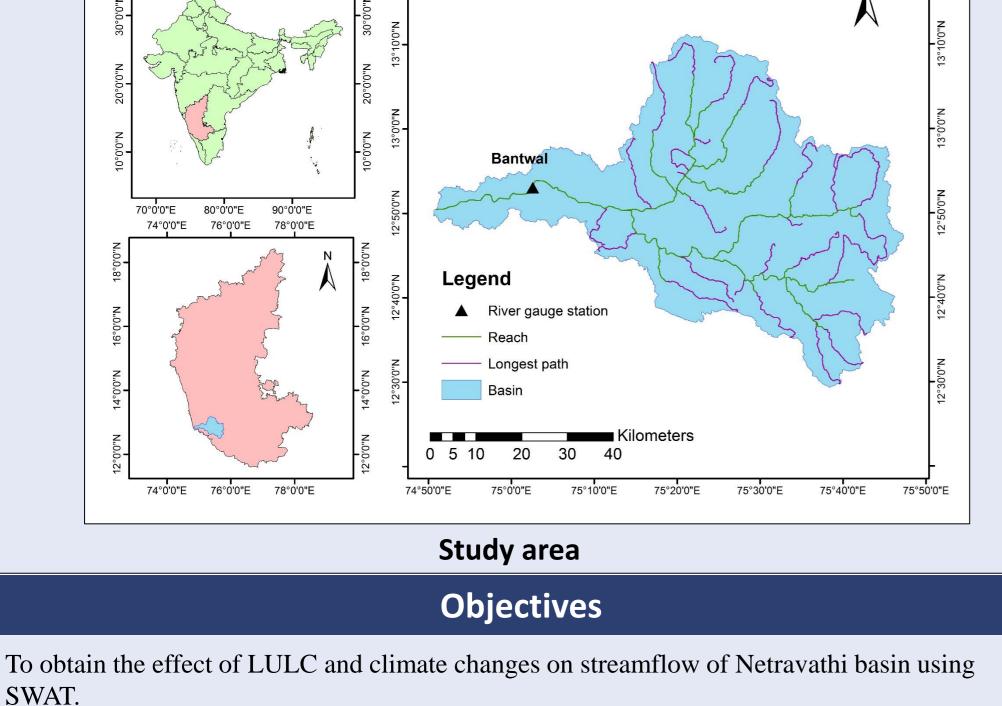
Impacts of Land Use Land Cover and Climate Change on Streamflow in Netravathi Basin, Karnataka, India CC I

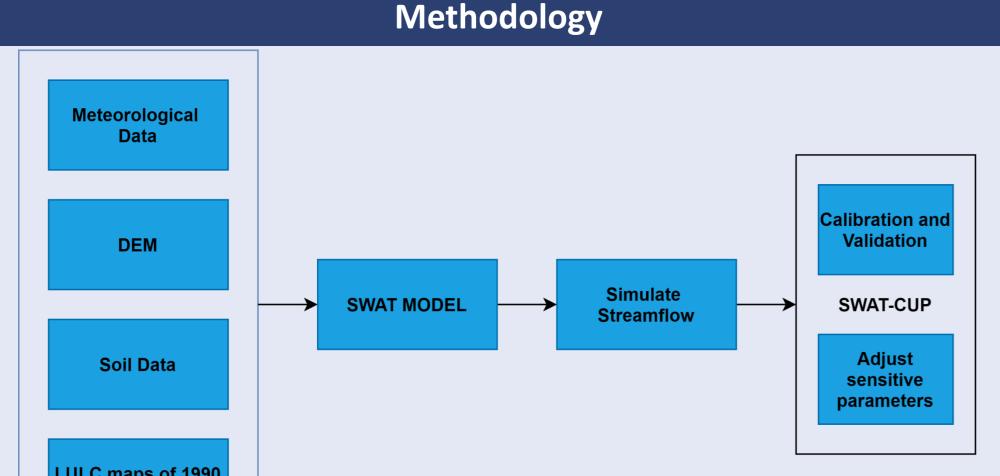
Dinu Maria Jose and G S Dwarakish

National Institute of Technology Karnataka, Surathkal, Mangaluru, 575025

HS2.2.1 "Models and Data: Understanding and representing spatio-temporal dynamics of hydrological processes"


Introduction


- Water is necessary for the sustenance of life, but its availability at sustainable **quantity and quality** is often intimidated by numerous factors.
- A considerable increase in **population, migration and socio-economic activities** have led to drastic changes in the environment over the last few decades.
- These changes have in turn affected the **stationarity of climate**, that is climate change is beyond the past variability.
- Massive land use/land cover change (LULCC) is a result of human activities.
- Studies indicate the effect of LULCC on hydrological regime and mark the **necessity** of its timely detection at appropriate scales for efficient water resource management.
- Netravathi River basin is of great socio-economic importance in the region.
- The river water is used for **religious, industrial, domestic** and **irrigation** purposes.
- Hence detailed spatial-temporal assessment of impacts of **climate change and LULCC** on streamflow and sediment yield of the basin is crucial for watershed management.


N0	70°0'0"E 80°0'0"E	90°0'0"E Z	74°50'0"E	75°0'0"E	75°10'0"E	75°20'0"E	75°30'0"E	75°40'0"E	75°50'0"E
40°0'		40°0'	13°20'0"					N	-
z	Sent							Â	

Results

- The streamflow increased steadily (5.02%) with changes in LULC from 1990 to 2018.
- the spatial extent of the LULC classes of built-up (3.82%-6.51%), water bodies (0.76%-0.99%), and agriculture (11.96%-17.89%) increased, whereas that of forest (66.56%-51.7%), fallow (3.82%-6.13%), and barren land (13.07%-16.76%) decreased from 1990 to 2018.

Model	19	90	2018		
performance indicators	Calibration	Validation	Calibration	Validation	
NSE	0.75	0.74	0.76	0.75	
PBIAS	10.26	22.13	4.07	6.51	
R ²	0.88	0.86	0.89	0.88	

Conclusions

- The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, in the catchment during this period.
- Thus, hydrological modelling integrating climate change and LULC can be used as an effective tool in estimating streamflow of the basin.

Selected References

Babar, S., and Ramesh, H. (2014). "Analysis of extreme rainfall events over Nethravathi basin." *ISH J. Hydraul. Eng.*, 20(2), 212–221.

LULC maps and 2				
			Data	
Data	Time period	Description	Source	Purpose
		С	onventional Data	
Streamflow Data	1990-2018	Daily Data	Central Water Commission, India	For calibration and validation of SWAT
Meteorological Data	1990-2018	Daily Data	Indian Meteorological Department, India	Input for SWAT

2012

Soil data

		(1 km×1 km)						
Remote Sensing Data								
Land use	04-03-1990	Landsat	https://earthexplorer.usgs.	For LULC classification and				
		(30 m × 30 m)	gov/	and change analysis				
	06-03-2018	Landsat	https://earthexplorer.usgs.	For LULC classification and				
		(30 m × 30 m)	gov/	and change analysis				
DEM	-	ALOS	www.asf.alaska.edu	For watershed Delineation				
		PALSAR						
		12.5 m						

Organization (FAO 2012)

Description of Food and Agriculture

soil types

Input for SWAT

Babar, S., and Ramesh, H. (2015). "Streamflow Response to Land Use – Land Cover Change over the Nethravathi River Basin , India." *J. Hydrol. Eng.*, 20(10), 1–11.

Bi, C., Bi, H., Sun, G., Chang, Y., and Gao, L. (2014). "Scale effects and variability of forest – water yield relationships on the Loess Plateau , China." *For. Chron.*, 90(2), 184–191.

Bormann, H., Breuer, L., Gräff, T., Huisman, J. A., and Croke, B. (2009). "Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) IV: Model sensitivity to data aggregation and spatial (re-)distribution." *Adv. Water Resour.*, 32(2), 171–192.

Chawla, I., and Mujumdar, P. P. (2015). "Isolating the impacts of land use and climate change on streamflow." *Hydrol. Earth Syst. Sci.*, 19(8), 3633–3651.

Dwarakish, G. S., and Ganasri, B. P. (2015). "Impact of land use change on hydrological systems: A review of current modeling approaches." Cogent Geosci., 1(1), 1–18.

Mudbhatkal, A., Raikar, R. V., Venkatesh, B., and Mahesha, A. (2017). "Impacts of Climate Change on Varied River-Flow Regimes of Southern India." *J. Hydrol. Eng.*, 22(9), 1–13.

Sinha, R. K., and Eldho, T. I. (2018). "Effects of historical and projected land use/cover change on runoff and sediment yield in the Netravati river basin, Western Ghats, India." Environ. Earth Sci., 77(111), 1–19.

Nature needs no help, just no interference. ~ B.J. Palmer

