

Marleen Schübl^{1,2}, Aleksandra Kiecak^{2,3}, and Christine Stumpp^{1,2}

- 1) University of Natural Resources and Life Sciences (BOKU) Vienna, Institute for Soil Physics and Rural Water Management, Water-Atmosphere-Environment, Austria (marleen.schuebl@boku.ac.at)
- 2) Institute of Groundwater Ecology, Helmholtz Zentrum München, München, Germany
- 3) Institute of Hydrochemistry, Technical University of Munich, Munich, Germany

Aims of the study

 Examine the transport behavior of selected pharmaceuticals in groundwater sediment:

- Antipyrine
- Atenolol
- Caffeine
- Carbamazepine
- Sulfamethoxazole
- Focus on **biodegradation** where degradation rates could not properly be established before → Long term experiments
- Use of intracellular adenosine triphosphate (ATP) as biological control parameter to estimate microbial activity and differentiate between sorption, biotic and abiotic degradation
- Insights into **interaction** effects of pharmaceutical compounds

$$R_f \frac{\delta c}{\delta t} = D \frac{\delta^2 c}{\delta x^2} - v \frac{\delta c}{\delta x} - \mu c$$

Results

- a) Five selected compounds injected simultaneously:
- Antipyrine, carbamazepine, and sulfamethoxazole showed very low to no degradation or sorption in two different sediments and under varying redox conditions.
 - → Highest contamination threat of tested compounds
- Atenolol was degraded in coarse sand; in sandy loam sorption seemed to be the dominant atenolol removal process
- Biodegradation of caffeine was found in the biotic settings of both sediments after a lag time of 120 to 420 hours and when enough dissolved oxygen was present.

Results

- b) Only caffeine and the antibiotic sulfamethoxazole injected simultaneously:
- Stronger degradation of sulfamethoxazole than in experiment with 5 compounds
- No degradation of caffeine → influenced by low concentrations of dissolved oxygen

Discerning biotic from abiotic processes:

- Abiotic settings spiked with sodium azide: no entirely sterile conditions achieved but considerably reduced microbial activity.
- Intracellular ATP concentrations increased with ongoing degradation of pharmaceuticals, especially of caffeine.

Conclusions

- Sediment type and redox conditions influence sorption and (bio)degradation of pharmaceuticals in groundwater.
- A lag time can be observed before biodegradation comes into effect, corresponding to an adaption period for microorganisms (requiring long term experiments).
- The combination/variety of pharmaceuticals in groundwater affects their transport behavior.