Can uneven bathymetry freeze water-wave breathers?

Maura Brunetti¹, Alexis Gomel¹, Andrea Armaroli¹, Amin Chabchoub², and Jérôme Kasparian¹

² Centre for Wind, Waves and Water, School of Civil Engineering, The University of Sydney, Australia

Theoretical problem:

Akhmediev Breathers (AB) and dnoidal-type envelopes are solutions of the nonlinear Schrödinger equation (NLSE). The first represents the nonlinear stage of the modulation instability and is subject to Fermi-Pasta-Ulam recurrence, the second is a steady-state periodic solution. We show how to transform AB at its peak focusing distance to a dnoidal dynamics by an abrupt change of NLSE parameters

Physical implementation:

Surface gravity waves in intermediate waters (depth = h, dispersive and nonlinear coefficients depend on h)

$$i\frac{\partial U}{\partial \xi} + \underbrace{\beta \frac{\partial^2 U}{\partial \tau^2}}_{\text{Dispersion}} - \underbrace{\gamma U|U|^2}_{\text{Nonlinearity}} = -i\mu_0 \frac{\partial (kh)}{\partial \xi} U - \underbrace{i\nu U}_{\text{Loss}}$$

Using a shoaling-corrected complex amplitude:

$$V \equiv U \exp \left[\int_0^{\xi} \mu(y) \, \mathrm{d}y + \nu \xi \right]$$

one obtains a varying parameters NLSE:

$$i\frac{\partial V}{\partial \xi} + \beta \frac{\partial^2 V}{\partial \tau^2} - \tilde{\gamma} V |V|^2 = 0, \quad \tilde{\gamma}(\xi) = \gamma(\xi) \frac{c_g(\xi=0)}{c_g(\xi)} \exp(-2\nu\xi)$$

Experimental setup:

30 m long flume at the University of Sydney

Carrier frequency: $f_0 = 1.53 \text{ Hz}$

Initial steepness: ϵ = 0.14

References:

- [1] Gomel, Chabchoub, Brunetti, Trillo, Kasparian, Armaroli, in preparation
- [2] Hasimoto & Ono, Journal of the Physical Society of Japan 33, 805-811 (1972)
- [3] Djordjevic & Redekopp, Journal of Applied Mathematics and Physics 29, 950 (1978)
- [4] Bendahmane et al., Optics Letters 39, 4490 (2014)

