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Introduction
• Nowadays, a plethora of hydrological models is available. Model-based studies are becoming

more and more frequent in literature (Burt and McDonnell, 2015).

• To account for the complexity and spatial heterogeneity of physical processes, many of those

models employ physically-based formulations, which may require a large amount of data.

However, the available data are often insufficient and/or of questionable quality. Moreover, an

increasing model complexity also gives rise to high computational requirements.

• A simple and flexible top-down approach for distributed rainfall-runoff (RR) modelling

developed and demonstrated by Tran et al. (2018) poses as a step towards addressing the

above. The distributed RR model can be built starting from a lumped or uniform distributed

model (calibrated at the catchment outlet), whose parameters are then spatially

disaggregated. Disaggregation is carried out using conceptual links between model

parameters and natural catchment characteristics.

Lumped model Distributed model
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Research questions

1) How well does the approach performs with respect to the internal gauging stations (internal

flow dynamics)?

• The concept is tested for a catchment (see later) with a lot of gauging stations (see

later). Out of those, 11 (including the outlet) with sufficient data quality have been

selected. The results are compared against those of the rescaled lumped model

(drainage-area ratio method) or the uniform distributed model.

2) Is it preferable to start disaggregation from a calibrated lumped model (as Tran et al., 2018) or

from a distributed model calibrated with a uniform parameterset (same parameter values for the

entire domain)?

• Modelling performance is evaluated for both configurations.

3) How well do the resulting distributed models perform with respect to modelling shallow, phreatic

groundwater (GW) levels?

• We experiment on the potential of simple methods for GW level modelling. We approach

this challenge by trying to identify links between a) the variations and b) the reference

levels of the modelled groundwater storages and observed groundwater levels.

• For testing the concepts, we selected 15 GW filters, which involve phreatic aquifers with

average GW depths of less than 10 m and do not present proclaimed trends due to

pumping.
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Study case: Demer catchment, Belgium 

• Upstream of station at Zichem: 1969 km2

• Croplands: 67%, Urban environment: 22%

• Silt: 50%, Silt loam: 20%, Sand:18%

• 01/01/2008-12/09/2019 (daily timestep, 2 years as warmup)

• Mean discharge at Zichem (study period): 11.9 m3/s

• Resolution used for distributed models: 250 m
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Parameter disaggregation

• For the current tests, the following form of disaggregation relationship was used:

𝐶𝑆,𝑔 = 𝐶𝑈 ∗
ρg
a

ρa

g      : index referring to a grid cell

CS,g   : parameter value at the grid cell

CU      : lumped/uniform model parameter value

ρg : grid cell physical property

a     : parameter to be calibrated

ρa : average ρa for the whole catchment

Lookup tables

(e.g. Rawls et 

al., 1982)

Lumped model 

parameters

+

Disaggregation 

relationships

• Topography (DEM)

• Land cover

• Soil texture

• Manning coeff.

• Porosity

• …

Distributed                                  

model parameters
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Lumped RR model structure: NAM             
(Nedbør-Afstrømnings-Model)

Parameters Description

Umax Maximum water content in surface storage (mm)

CQOF Overland flow runoff coefficient (-)

TOF Root zone moisture threshold for overland flow (-)

TIF Root zone moisture threshold for interflow (-)

TG Root zone moisture threshold for ground water recharge (-)

CKBF Baseflow time constant (hours)

CKIF Interflow time constant (hours)

CKOF Overland flow time constant (hours)

Lmax Soil storage capacity (hours)

NAM model structure (DHI, 2011)

• As opposed to Tran et al. (2018), all NAM model

parameters are now linked to physical properties (and,

thus, can be disaggregated).
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Distributed RR modelling

Config. C1

• Disaggregation starts from a calibrated lumped model

(original approach).

• To account for vertical re-distribution of water as it

moves downstream, a part of the overland flow (OF)

from each upstream grid cell enters the groundwater

storage of the corresponding downstream grid cell.

• To compensate for the extra water entering the

groundwater storages, the OF flow produced by the

model is multiplied by a factor (larger than 1.0) and

baseflow (BF) reduced by the corresponding quantity.

Config. C2

• Disaggregation starts from a distributed model

calibrated with a uniform parameterset (same

parameters for the entire domain).

• Overland flow (OF) and interflow (IF) from each

upstream grid cell are added to rainfall inputs for the

corresponding downstream grid cell. Thus, the model

structure itself determines the vertical water re-

distribution.

• As opposed to the previous configuration (C1), no

additional parameters are needed.
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RR models: Calibration methodology
• Half the period was used for (automatic) calibration. To mitigate the danger of over-parameterization,

an integrated objective function (to be minimized) was used for the lumped and uniform models:

𝑓 = 1 − 𝐾𝐺𝐸 + 1 − 𝐾𝐺𝐸𝐻,𝑟𝑎𝑛𝑘𝑒𝑑 + (1 − 𝐾𝐺𝐸𝐿,𝑟𝑎𝑛𝑘𝑒𝑑) + relVol

𝑟𝑒𝑙𝑉𝑜𝑙 =

σ𝑚𝑜𝑑𝑒𝑙 − 𝑜𝑏𝑠

σ𝑜𝑏𝑠
, 𝑖𝑓

σ𝑚𝑜𝑑𝑒𝑙 − 𝑜𝑏𝑠

σ𝑜𝑏𝑠
≥ 10%

0 , 𝑖𝑓
σ𝑚𝑜𝑑𝑒𝑙 − 𝑜𝑏𝑠

σ𝑜𝑏𝑠
< 10%

KGE : Kling-Gupta Efficiency (Gupta et al., 2009)

KGEH, ranked : KGE on “nearly-independent” ranked extreme high flows

KGEL, ranked : KGE on “nearly-independent” ranked extreme low flows

• “Nearly-independent” extreme flows were extracted using WETSPRO tool (Willems, 2009).

• Effluents (from WWTPs and/or industry) were considered in the modelling process.

• The disaggregated models (configurations C1, C2) were calibrated using the average KGE on the

internal gauging stations. To avoid a proclaimed deterioration on the performance at the catchment

outlet, a strong penalty was enabled if KGE at the outlet fell below a certain threshold.

• Apart from KGE, the following criteria were used to evaluate model results: KGE on the ranked flows

larger than the 90th percentile (KGE_90), NSE (Nash and Sutcliffe, 1970) on log-transformed flows

(NSE_log), percent bias (PBIAS).
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Results: RR modelling
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Results: RR modelling (2)
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GW level modelling: methodology

• For modelling groundwater levels (shallow, phreatic aquifers), we test the following equation:

𝐺𝑊𝐿 = a + b ∗ elevation +
GWstor

𝑈𝑃𝑆𝑜𝑣𝑒𝑟𝑙𝑎𝑛𝑑 ∗ 1000
∗
c

𝑆𝑦

GWL       : groundwater levels (m)

Elevation : soil surface elevation (from DEM) (m)

GWstor : groundwater storage from NAM model (mm)

UPSoverland : nr. of upstream non-river cells

Sy : specific yield (sometimes also called effective porosity) (-).

a, b, c     : parameters to calibrate (-)

Specific yield (Sy) was estimated as follows (Bear, 1979):

𝑆𝑦 = 𝑛 − 𝑆𝑟

n               : porosity (-), can be estimated from soil texture

Sr                     : specific retention (-), can be estimated from soil texture (e.g. see Rawls et al., 1983)

• The distributed RR modelling configuration C2 is used (C1 could have been selected as well..).

Calibration was carried out (automatically) using half the modelling period based on the

average Nash-Sutcliffe Efficiency (NSE) for the selected GW filters.

• We evaluate modelling performance on both GW levels and GW level anomalies.
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Results: GW level anomalies
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Results: GW levels
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Results: GW level modelling
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Conclusions & discussion

• We tested 2 versions (C1, C2) of a simple top-down approach for setting-up distributed RR

models. Compared to the original (rescaled lumped or uniform distributed) models, the new

models (developed via parameter disaggregation) improved the performance metrics for most

of the internal stations while maintaining a similar performance (based on KGE) at the

catchment outlet.

• Configuration C2 performed better than C1 with respect to most criteria.

• The tested simplified methodology for modelling GW level dynamics seems promising, but

clearly needs further improvement and testing.

• For 3 out of 15 GW filters (e.g. 7-0210), the modelled GW storage is close to zero (0) for large

time periods, which results in a poor performance with respect to modelling GW level

anomalies. This is one of the points in need of improvement.

• RMSE for GW levels is considerably larger than RMSE for GW level anomalies. Thus, a better

way to represent the reference levels of the modelled groundwater storages is needed.

• Taking into account GW abstractions could be another way for improving performance.
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