

Towards reconciling seismic and geodetic moment estimations: Case Bárðarbunga

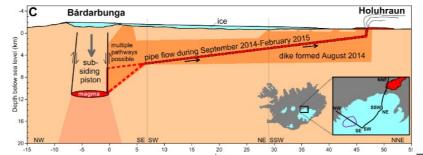
Rodrigo Contreras Arratia* & Jurgen Neuberg

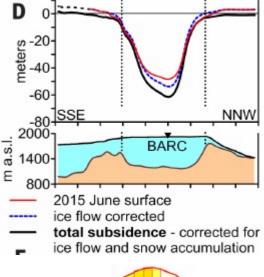
*eerac@leeds.ac.uk

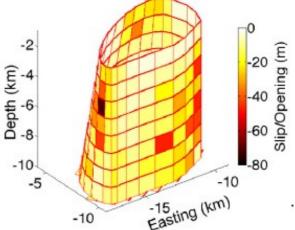
School of Earth and Environment, Institute of Geophysics and Tectonics, University of Leeds

Overview:

- Caldera collapse of Bárðarbunga 2014 2015
- Partial ring fault rupture as source model for biggest earthquakes
- Recalculation of seismic moment casts doubt on aseismic collapse?

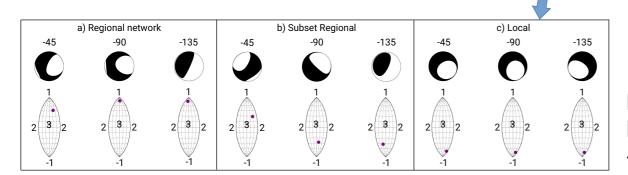



Bárðarbunga collapse 2014-2015



From Gudmundsson et. al. (2016)

	Gudmundsson et al., (2016)	Recalculations
Subsidence	60m	40m (Parks et al., 2017)
Height of fault	12km	6-7km (Agustsdottir et al, 2019)
Rigidity	2 – 20 GPa	10GPa (this study)
Seismic moment (Mo)	Planar rupture	Curved ruptures



Source parameters of ring ruptures

- Larger seismic moment than planar sources produce the same seismic radiation : we calculate the correction factor
- MT dominated by ISOtropic. CLVD dominates deviatoric
- ➤ Tested 3 networks: Seismic moment → regional better

MT estimation → local better

Focal mechanisms: Deviatoric MT Lune plot: full MT; 1 explosion, -1 implosion, 2 CLVD and 3 DC.

	Rupture model
_	00000
0	Rake angles
-	[4590135]

Duntura modal

Rupture	Correction of Mo due to curvature
1/4	x2.93 larger
1/2	x3.68 larger
3/4	x7.75 larger
Full	x9.7 larger

Conclusion

- Assuming ruptures of 90° in NNW of caldera → correction factor ~3
- ightharpoonup Seismic moment proposed by Gudmundsson et al, 5.07 x 10¹⁸ Nm, we recalculate (x3) to 1.5 x 10¹⁹ Nm
- \geq Geodetic moment of 6.67 x 10¹⁹ Nm (recalculated by other studies)
 - Around 1/4 of the total strain energy is seismic.
- Slow earthquakes? Tremor? Lubrication of faults?
- ightharpoonup Is Mo = μ A D valid for ring faults?