

The impact of the 2019 Ridgecrest earthquake sequence on time-dependent earthquake probabilities for the Garlock fault, California, USA

Sara Carena¹, Alessandro Verdecchia², Alessandro Valentini³, Bruno Pace³, Francesco Visini⁴ ¹LMU University, Munich, Germany ²McGill University, Montreal, Canada ³DiSPUTer, Università G. d'Annunzio di Chieti-Pescara, Italy ⁴Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Italy alessandro.verdecchia@mail.mcgill.ca

ΔCFS in Eastern California Shear Zone before Ridgecrest earthquake

	Year (A.D.)	Event	M
1	913	Fish Lake (LC)	6.8
2	950	Fish Lake (Oasis)	6.7
3	1508	Mojave (SAF)	7.5
4	1540	Garlock	7.7
5	1557	Panamint Valley	7.1
6	1715	Furnace Creek	7.2
7	1812	Wrightwood	7.5
8	1857	Fort Tejon	7.9
9	1872	Owens Valley	7.5
10	1952	Kern County	7.3
11	1992	Landers	7.2
12	1999	Hector Mine	7.1

Ridgecrest earthquakes (M 6.4, M 7.1) occurred in a region characterized by coseismic + postseismic positive Coulomb stress changes (ΔCFS) due to several historical and paleoseismological earthquakes (Verdecchia & Carena, 2016)

ΔCFS in Eastern California Shear Zone before Ridgecrest earthquake

	Year (A.D.)	Event	M
1	913	Fish Lake (LC)	6.8
2	950	Fish Lake (Oasis)	6.7
3	1508	Mojave (SAF)	7.5
4	1540	Garlock	7.7
5	1557	Panamint Valley	7.1
6	1715	Furnace Creek	7.2
7	1812	Wrightwood	7.5
8	1857	Fort Tejon	7.9
9	1872	Owens Valley	7.5
10	1952	Kern County	7.3
11	1992	Landers	7.2
12	1999	Hector Mine	7.1

Ridgecrest earthquakes (M 6.4, M 7.1) occurred in a region characterized by coseismic + postseismic positive Coulomb stress changes (ΔCFS) due to several historical and paleoseismological earthquakes (Verdecchia & Carena, 2016)

ΔCFS on the left-lateral Garlock fault after Ridgecrest earthquakes

Most Recent Event El Paso Peaks
A.D. 1450-1640
Preferred age A.D. 1540

Most Recent Event Twin Lakes
A.D. 1520-1850

Same Event???

ΔCFS calculated only considering events occurred after the A.D. 1540 Garlock earthquake

ΔCFS on the left-lateral Garlock fault after Ridgecrest earthquakes

Max ΔCFS of about 10 bars on central Garlock fault

How \triangle CFS may influence time-dependent earthquake probabilities on the Garlock fault? BPT (Brownian Passage Time) curves for a M \geq 7 event on central Garlock fault

Paleoevents at El Paso Peaks site (Dawson et al., 2003) Central Garlock

> A.D. 1450-1640 A.D. 675-950 A.D. 250-475 A.D. 25-275 3340-2930 B.C.

5300-4670 B.C.

Modified elapsed time $T_{elap'} = T_{elap} + (\Delta CFS_{cum}/\tau)$

Modified recurrence time $T_{m'} = T_m - (\Delta CFS_{cum}/\tau)$

 τ =tectonic loading (0.07 bar/yr)

T_m and CV based on all paleoevents at El Paso Peaks site

BPT (Brownian Passage Time) curves for a M ≥ 7 event on central Garlock fault

Paleoevents at El Paso Peaks site (Dawson et al., 2003) Central Garlock

A.D. 1450-1640

A.D. 675-950

A.D. 250-475

A.D. 25-275

3340-2930 B.C.

5300-4670 B.C.

Modified elapsed time $T_{elap'} = T_{elap} + (\Delta CFS_{cum}/\tau)$

Modified recurrence time $T_{m'} = T_m - (\Delta CFS_{cum}/\tau)$

 τ =tectonic loading (0.07 bar/yr)

T_m and CV based on the last 4 paleoevents at El Paso Peaks site considering that the fault is still within its latest seismic cluster

Segmented Model

595 unique ruptures

We evaluate the time-independent, long-term rate of ruptures on the Garlock fault system following an approach to solve for the long-term rate of every possible earthquake rupture on a fault system (Visini et al. 2019, SUNFiSH, https://doi.org/10.1007/s00024-019-02114-6)

μ shear modulus (30 GPa) L rupture length W rupture width Central segment

[25]

[25]

[20]

Following SUNFiSH:

Define maximum M_w of each rupture based on geometry

Slip rate (v) assigned to each subsection (slip rate profile). Seismic moment rate for each rupture (\dot{M}_{Oi}) :

$$\dot{M}_{Oi} = \mu LWv (1)$$

Scale the seismic moment rate of each rupture by:

$$\dot{M}_{Oi-s} = \dot{M}_{Oi} * \frac{\dot{M}_{Ot}}{\sum \dot{M}_{Oi}}$$
 (2)

 M_{Ot} target seismic moment rate equal to 5.83 x 10¹⁷ N/m² obtained summing up the seismic moment rate of each subsection.

 \dot{M}_{Oi-S} used to compute the activity rate of each rupture

The T_{mean-rup} of the maximum magnitude is computed using

the criterion of "segment seismic moment conservation" (Field et al., 1999)

the frequency of earthquakes on each subsection (f_s) is computed summing the rates of ruptures by:

$$f_s = \sum_{r=1}^R G_{sr} f_r \quad (3)$$

 G_{sr} is a matrix indicating whether the *rth* rupture involves the sth subsection (1 is so, 0 if not)

We need time-dependent probabilities

The net occurrence probability for each rupture is computed as

$$P_r = P_r^{BPT} \left[\frac{\mu_r^{cond}}{\mu_r} \right] \tag{7}$$

and following Field and Jordan (2015), for an historical open interval (T_H) of 145 years. This means that no event has occurred during this interval.

Then, we compute a modified μ_r^{cond} , using μ_s^{Mod} in the eq. 6 and so a modified P_r^{BPT} with $\mu_r^{condMod}$. Finally, the modified time-dependent probabilities due to coulomb stress variations are given by:

$$P_r^{Mod} = P_r^{BPTMod} \left[\frac{\mu_r^{cond}}{\mu_r} \right]$$
(9)

Segmented Model

Slip Rates

In this work we use long-term slip rates based on four deformation models (Field et al., 2015, BSSA, UCERF3)

Geologic: Based on geologic slip rates compilation

Zeng: Fault-based model for crustal deformation (GPS data and Geologic data) (Zheng & Shen, 2017, BSSA)

NeoKinema: Uses a combination of geodetic data and geologic slip rates (Bird, 2003)

ABM: Average block model of five different block kinematics models.

Here, following UCERF3 we use a weighted mean of the four models as follow:

ABM=0.1, NeoKinema=0.3, Zeng=0.3, and the UCERF3 geological model=0.3

Segmented Model

Preliminary results

Probability in the next 30 years for each subsection that the same subsection will rupture in a **Mw** ≥ **6.2 earthquake** (magnitude corresponding to a rupture which include two subsections or more). The **red** line represents the **time**independent probability (Poisson), the black line represents the time-dependent (BPT) probability, and the dashed black line represents the time-dependent (BPT) probability when ΔCFS is included.

Segmented Model

Preliminary results

Probability gain/loss when comparing time-dependent (BPT) probabilities with and without Δ CFS, and time-independent (Poisson) probabilities. The probabilities refer to the occurrence of a $M \ge 6.2$ event on each of the subsections of the Garlock fault in the next 30 years

How ΔCFS may influence time-dependent earthquake probabilities on the Garlock fault? Preliminary Conclusions

The 2019 M 6.4 and M 7.1 Ridgecrest earthquakes have produced Coulomb stress increase up to 10 bars on the central segment of the Garlock fault.

Our results based on **simple time-dependent (BPT) probability** calculations show that the Ridgecrest earthquake have increased **(from ~10% to ~15%)** the probability of occurrence of a large earthquake ($M \ge 7$) on the central Garlock fault in the **next 30 years**.

Preliminary results from a more realistic **segmented model** show an increase of probability **(from ~14% to ~17%)** for a M \geq 6.2 event in the subsections where the largest Δ CFS from the Ridgecrest earthquakes were calculated

Future work

Refine our segmented model including data form paleoseismological trenches.