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e Ensemble nearshore wave projections are required to assess uncertainties in future wave cIimate\
e Ensemble wave projections are available offshore

2I7elel=1aa0 ® Wave downscaling from offshore to nearshore using numerical models requires high
computational capacity -> Wave propagation involves non-linear processes y

e Can machine learning models be an efficient tool for downscaling wave projections?
e Condition: A representative set of nearshore and offshore wave data is needed in order to train the model

J

e We test the performance of 4 models on representing the links between offshore & nearshore \
waves:

e Multi Linear Regression (MLR)

e Random Forest (RF)

e Multivariate Adaptive Regression Splines (MARS)

o Artificial Neural Networks (ANN) /
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@Inputs & Outputs: Offshore & Nearshore wave parameters

[ X(Hs,Tm,Tp,Dir) oreshore > Y(Hs,Tm,Tp, Dir)yearstore ]

@Data: Wave Information Studies Hindcast (WIS) of US Army Corps of Engineers
@ Hourly Sea States from 1980 to 2014

@Input & Output stations: Correlation between
offshore and nearshore Stations

@Performance: 10-Fold cross validation
@ RMSE, R? (bias, scatter index,...)
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Machine Learning Models CRSLR -
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* Multi Linear Regression

[Y(Hs,Tm,Tp,Dir),\IEARSHORE =B - X(Hs,Tm,Tp,Dir)OFFSHORE]

 Pros: Easy implementation and interpretation 046
- Cons: Non-linear wave propagation processes -
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* Random Forest |

- A number of decision trees (bagged) are trained mk
independently on bootstrapped data from the input 002 | |
dataSEt, 0 50 100 150

Number of grown trees
- Pros: Fast algorithm, easy implementation, able to

capture non-linearities and provides quantiles of the
response variable |-|-TL| rqlﬁ r'1_|_r'_r'|
- Cons: Difficult interpretation ~—1
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* Multivariate Adaptive Regression Splines

- The algorithm automatically selects the cutpoints (Knots) of the predictors for fitting
cubic regressions where the smallest error is achieved.

- Pros: Automatically captures non-linear relationships and easy interpretation

- Cons: Computational expensive compared to MLR and RF

* Artificial Neural Network

- Connected networks of neurons that are iteratively trained (by modifying the weights
of the connections) to relate the inputs (predictors) to the output (response)

Input Layer Hidden Layer Output Layer

- Network architecture:
- 1 Hidden Layer with 10 neurons
— Transfer function hidden layer: tan sigmoid
— Transfer function output layer: purelin

- Pros: Automatically captures non-linear relationships

- Cons: Not computational efficient compared to MLR and RF, network

architecture has to be defined in order to obtain good performance
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@RF outperforms the other models, it is easy to implement and computational
efficient

@ Hs is simulated with average error of 11% along the entire coast of Florida and 6% in the
extremes

@ Similarly, Tp and Tm are simulated with errors
between 5% to 6%
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Models’ Performance Dir CRSLR ...
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Cape Canaveral

@Poor performance modelling the Dir by all models

@Models are not able to capture the behavior of
directions within the North sector

@ Dir is a Circular Variable

@ Transformation of Dir into 2 variables:
Sine & cosine improves model

performance
No Transformation Transformation sin & cos
90 90

120 60 120 60
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4 )
Machine learning models are an efficient tool for downscaling

wave projections, which are still omitted in the majority of

coastal flood assessments
\_ J

@ RF outperforms the other models and requires lower computational time

@ Circular variables such as the Dir require a transformation into two variables in
order to accurately model the North sector
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