

Session HS-8.1.6: Handling Uncertainties in Model Concepts, Parameters, Forcings and Forecasts: Diagnostics, Sensitivity, Inversion and Uncertainty Analysis

A comprehensive global sensitivity analysis using generic sampling designs by means of a combination of variance- and distributionbased approaches

Gabriele Baroni⁽¹⁾ and Till Francke⁽²⁾

(1) Università di Bologna (Italy), g.baroni@unibo.it(2) University of Potsdam (Germany)

- A) **Motivations:** why and how to improve current best practices in global sensitivity analysis (GSA)?
- B) A new <u>C</u>ombined <u>V</u>ariance- and <u>D</u>istribution-based global sensitivity analysis CVD - GSA: how does it work?
- C) Tests to three analytic functions and one hydrological model
- D) Conclusions and Outlook

voiversit.

A) Motivation

1. global sensitivity analysis (GSA) is an important tool for

- supporting model developments
- processes understanding
- 2. State-of-the-art **variance-based approach** (Saltelli et al., 2010)
 - Identify important parameters (main effect) and interactions (total effect – main effect)
 - It works also on non-scalar factors (e.g., Baroni and Tarantola, 2014)

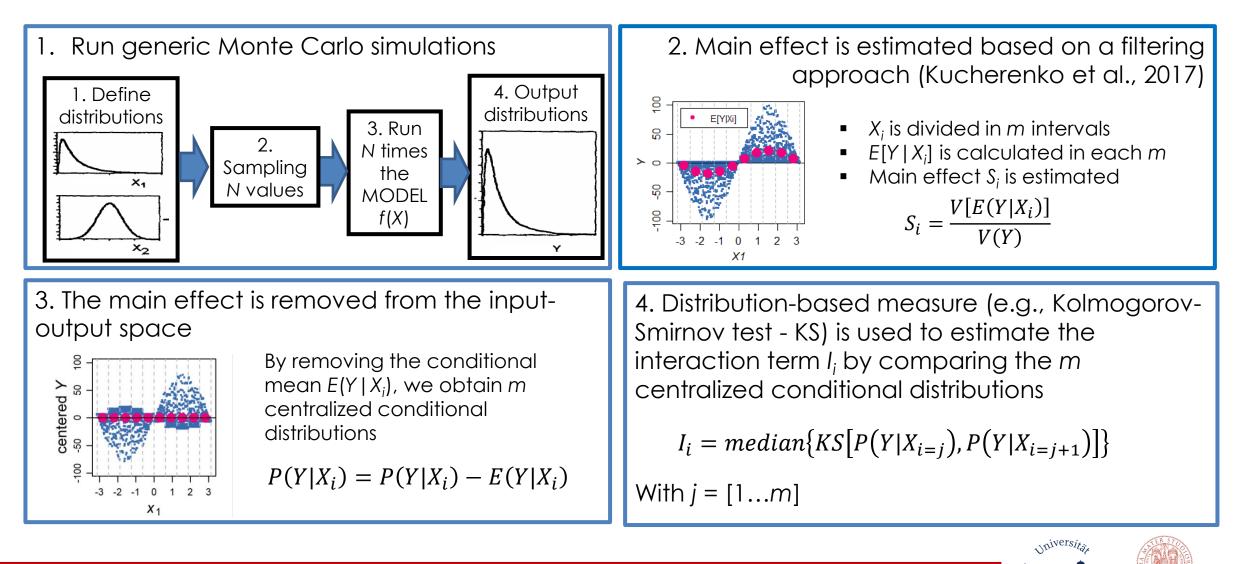
3. Limitations

- Specific sampling design
- Relatively high number of simulation runs
- Issues with non-gaussian distributions (distributionbased approaches)
- how to improve?

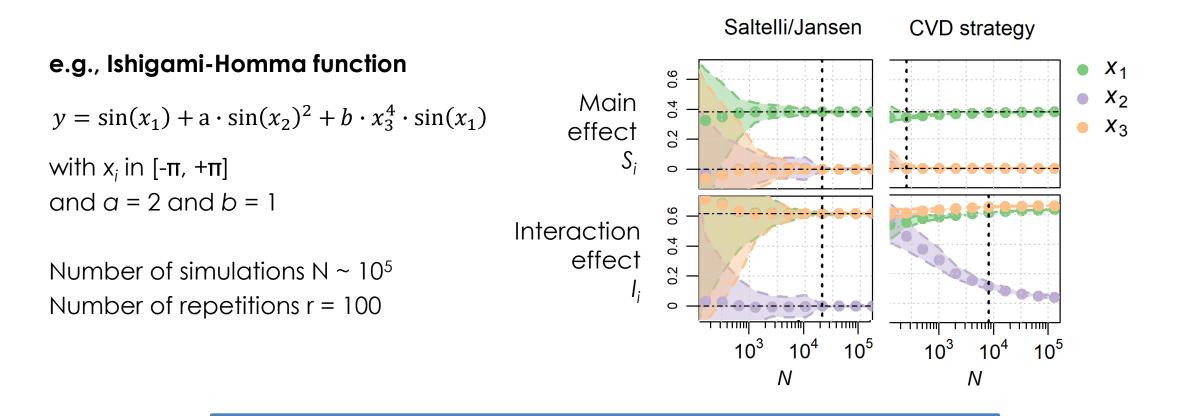
$$S_i = \frac{V[E(Y|X_i)]}{V(Y)}$$

$$T_i = \frac{E[V(Y|X_{\sim i})]}{V(Y)}$$

Where:


 S_i main effect of factor *i* T_i total effect of factor *i* E mean operator V variance operator $Y \mid X_i$ output Y conditioned to X_i $Y \mid X_{-i}$ output Y conditioned to all but not X_i

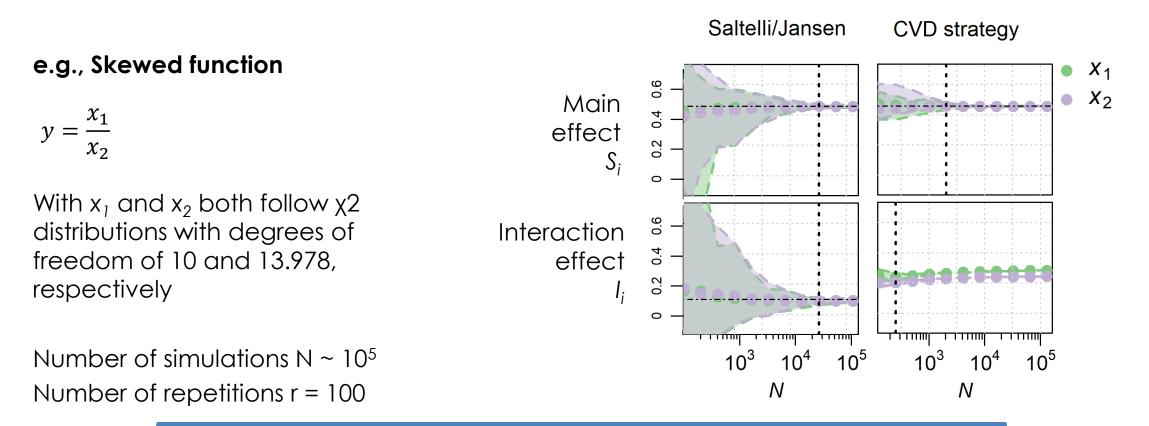
Interaction $I_i = T_i - S_i$


B) An effective <u>Combined Variance- and Distribution-based strategy</u> (CVD)

Baroni and Francke: A comprehensive global sensitivity analysis using generic sampling designs

C) Tests to three analytic functions and one hydrological model

CVD well estimates main and interaction with lower sample size



Baroni and Francke: A comprehensive global sensitivity analysis using generic sampling designs

5

C) Tests to three analytic functions and one hydrological model

Variance-based measures do not identify differences between the two parameters. The interaction terms *I* based on CVD identify differences between the two factors

(i)

Baroni and Francke: A comprehensive global sensitivity analysis using generic sampling designs niversit:

D) Conclusions and Outlook

Conclusions

- Main and interactions effects are estimated from a generic sampling design. CVD strategy can be easily integrated in any modelling framework
- The new approach converges faster than Saltelli/Jansen formula and combines the strength of variance and distribution-based approaches in exploring input-output space

Repository and document

- GitHub: <u>https://github.com/baronig/GSA-cvd</u>
- Manuscript under review: Baroni and Francke, An effective strategy for combining varianceand distribution-based global sensitivity analysis

Outlook

- Alternatives estimation of main and interaction term can be tested e.g., spline interpolation, δ -measure (Borgonovo et al., 2007)
- Testing on highly skewed modelling output

References

Baroni, G., Tarantola, S., 2014. A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study. Environ. Model. Softw. 51, 26–34. <u>https://doi.org/10.1016/j.envsoft.2013.09.022</u>

Borgonovo, E., 2007. A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 92, 771–784. https://doi.org/10.1016/j.ress.2006.04.015

Kucherenko, S., Song, S., 2017. Different numerical estimators for main effect global sensitivity indices. Reliab. Eng. Syst. Saf. 165, 222–238. <u>https://doi.org/10.1016/j.ress.2017.04.003</u>

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., 2010. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270. https://doi.org/10.1016/j.cpc.2009.09.018

Thank you for the attention

Gabriele Baroni

Department of Food and Agricultural sciences (DISTAL)

> University of Bologna (Italy)

Till Francke

Institute of Environmental Science and Geography

University of Potsdam (Germany)

g.baroni@unibo.it