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Motivation
▪ Radiative transfer (RT) equations are well-known and can be solved with high accuracy.

▪ However, radiation computations in atmospheric models are computationally very 
expensive

➢ Approximations needed to gain speed, e.g. coarser spatial/temporal resolution (e.g. Morcrette, 2000; 

Hogan & Bozzo, 2018) or spectral sampling (Pincus & Stevens, 2009)

• Machine learning is a promising tool to accelerate RT computations
➢ Directly predicting radiative fluxes with neural networks may give speed-ups of >1 order of magnitude 

(e.g. Chevallier et al.,, 2018; Kransopolsky et al., 2005), but involves replacing the RT equations and 
therefore does not respect the well-understood underlying physics.

➢ Alternative: emulating only the parts RT parametrizations that require most assumptions, not the RT 
equations
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Goal

▪ Developing a machine learning-based parametrization for the gaseous optical properties
to accelerate radiative transfer calculations

▪ Our approach:

➢ Training neural networks to emulate the optical properties parametrization RRTMGP (Rapid Radiative
Transfer Model for General circulation model application – Parallel; Pincus et al., 2019)

➢ Using machine-specific optimised BLAS functions to significantly accelerate matrix computations when
solving the neural networks

➢ “case-specific” training (i.e. for a limited range of atmospheric conditions) to allow smaller and
therefore faster neural networks
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Three sets of “case-specific” neural networks

▪ One NWP-tuned set: wide range of thermodynamic variables, based on atmospheric 
profiles from the Radiative Forcing Model Intercomparison Project (Pincus et al, 2016)

▪ Two LES-tuned sets:  range of thermodynamic variables in a single LES case
➢ Radiative Convective Equilibrium Model Intercomparison Study (RCEMIP; Wing et al., 2018)

➢ Diurnal cycle of a convective boundary layer over grassland near Cabauw, the Netherlands (Vilà-Guerau
de Arellano et al., 2014, Pedruzo-Bagazgoitia et al., 2017)

All gases except water vapour and ozone are constant (suitable for NWP/LES)

Using a separate neural network per optical property, the networks are trained to predict 
the gaseous optical properties at all quadrature points (for the spectral integration) as 
calculated by RRTMGP
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Training performance
(NWP-tuned neural networks)

▪ Larger networks perform better (lower MSE)

▪ Performance of Linear networks is significantly 
worse: linear regression is not a suitable 
solution

▪ All predicted optical properties are highly 
accurate (R2>0.99), except for Linear networks
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Explanation: Linear has no hidden layer, 1L-32 has 1 
hidden layer of 32 nodes, 3L-32_64_128 has 3 hidden
layers of 32, 64 and 128 nodes, respectively. 



Trade-off between accuracy and speed 
(NWP-tuned networks)

▪ Errors of radiative fluxes based on neural network-
predicted optical properties, with respect to radiative 
fluxes based on optical properties of RRTMGP
➢ With all network sizes, high accuracies for both longwave and 

shortwave radiation

▪ Depending on network size, our parametrization is 
between 3 to 7 times faster than RRTMGP

▪ Larger networks give more accuracy, but reduce the
speed-up that can be achieved
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LES-tuning (Cabauw, RCEMIP) vs NWP-Tuning
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▪ Mean absolute errors of the
downward radiative fluxes at the
surface, based on profiles of the
Cabauw (top) and RCEMIP 
(bottom) simlations

▪ In general higher accuracies with
LES-tuning (especially for
shortwave radiation), for the LES 
case the networks are trained for.

▪ Therefore, smaller neural
networks suffice
➢ Higher speed-up

▪ Although fluxes are quite
accurate, NWP networks show 
some signs of overfitting
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