Uncertainties in χ analysis Implications for drainage network and divide stability

Jens M. Turowski -Helmholtzzentrum Potsdam, German Research Centre for Geosciences GFZ, Telegrafenberg, 14473 Potsdam, Germany
Wolfgang Schwanghart - University of Potsdam, Institute of Environmental Science and Geography, Karl-Liebknecht-Str. 24-25, DE-14476 Potsdam-Golm, Germany
Kim Huppert - Helmholtzzentrum Potsdam, German Research Centre for Geosciences GFZ, Telegrafenberg, 14473 Potsdam, Germany
Claire Masteller - Department of Earth and Planetary Sciences, Washington University in St. Louis, USA

How big is big?

- Uncertainty in χ not quantified
- No way to tell whether a difference across the divide is significant!
- Uncertainties in drainage area control uncertainties in χ

Sources of error of drainage area

- Divide follows a line, pixels are area elements
- Pixels are fully assigned to one basin, but contain area belonging to another basin

Sources of error of drainage area

- Pixels may be assigned to the wrong basin
- This can happen if the pixel elevation error exceeds the difference in elevation in the adjacent pixels at the divide

Analytical solution

- Gaussian error propagation
- Uncorrelated errors
- Hack's law for drainage basin shape
- Simple quantification of error sources
- Arrive at analytical solution dependent on
- Pixel size
- Concavity index (set to 0.5)
- Basin shape (Hack exponent, geometric shape factor)

Dependence on drainage area

- Uncertainty largest close to the divide
- Depending on input parameters, 10% to $>100 \%$ of the value of χ !

Dependence on pixel size

- For constant absolute elevation error, uncertainty decreases with pixel size
- For elevation errors that scale with pixel size (constant relative errors), positive quadratic dependence

Dependence on concavity

- Strong negative exponential dependence on concavity index

Alternative approach: Multiple flow directions

- Different method to obtain errors in drainage area
- Relies on interpretation of fractions of multiple flow directions as probabilities
- Multiple possible flow directions allow different flow paths
- Probabilistic assignment of divide pixels (and adjacent pixels) to individual outlets
- Monte-Carlo method to select a flow path realization
- See Schwanghart \& Heckmann, Environmental Modelling \& Software, 2012
- Drainage area and divide location varies with the specific flow path
- Allows calculation of variance of drainage area and χ

Alternative approach: Multiple flow directions

Example calculation for the Big Tujunga basin.

Alternative approach: Multiple flow directions

Comparison

- Consistency of analytical and MC derived errors

Covariance?

- Errors in χ depend on pixels at the divide
- Although drainage area is serially correlated, divide pixels are not, at least not to the same extent
- Example to the right
- Blue basin shares ${ }^{\sim} 1 / 2$ of boundary with orange basin
- Orange basin shares $\sim 1 / 3$ of boundary with blue basin
- Yellow basin does not share any boundary pixels with the blue or orange basins

