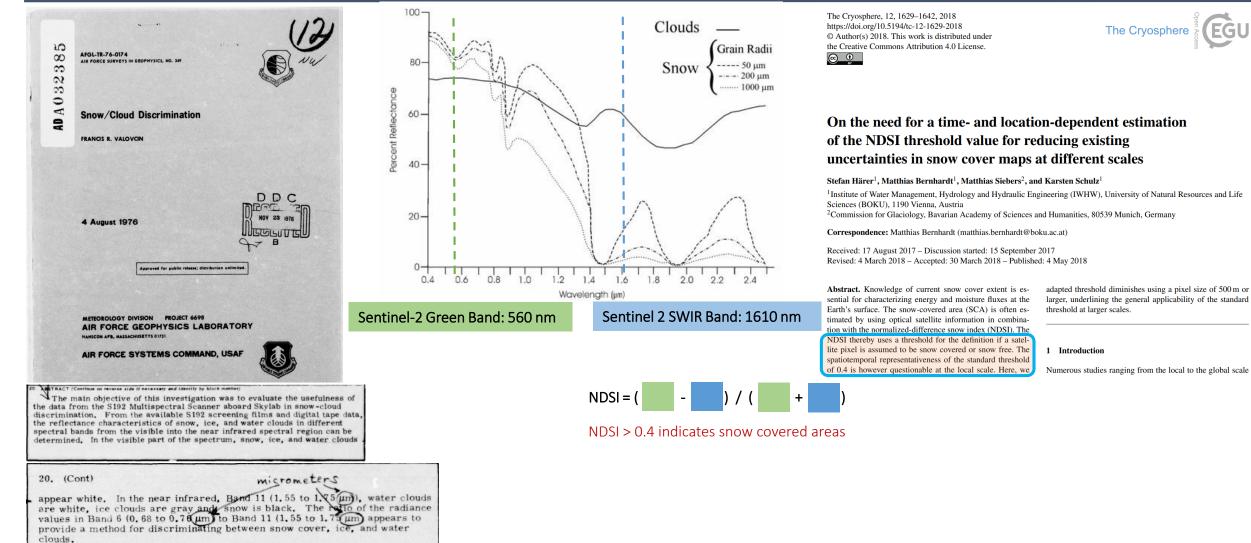

A Novel Perspective on Mapping Snow Cover Under Forest Canopy With Sentinel-2 Multispectral Optical Satellite Sensor Over Black Forest Germany

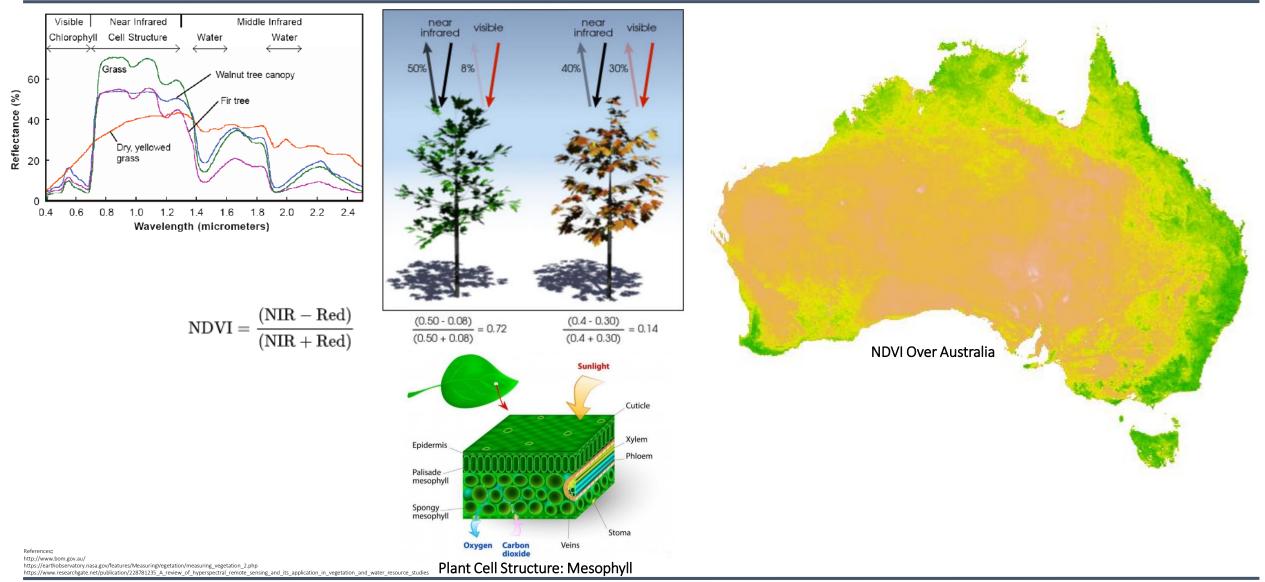
Professur für Hydrogeographie und Klimatologie Geographisches Institut, Universität Heidelberg, INF 348, 69120 Heidelberg arnab.muhuri@alumni.uni-heidelberg.de

Arnab Muhuri


Alexander von Humboldt

Stiftung/Foundation

Mapping Snow Cover With Normalized Difference Snow Index (NDSI)



References: Valovcin, Airforce Geophysical Laboratory (Meteorology Division, Project 6698), 1976

Understanding Normalized Difference Vegetation Index (NDVI)

Normalized Difference Forest Snow Index (NDFSI) Over the Black Forest

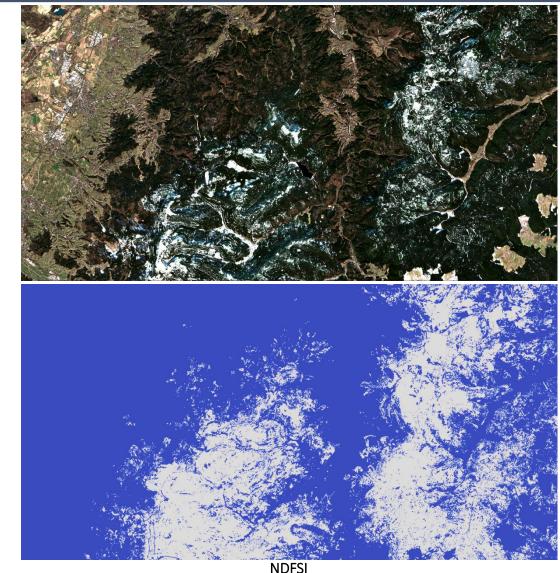
MDPI

Article

An Effective Method for Snow-Cover Mapping of Dense Coniferous Forests in the Upper Heihe River Basin Using Landsat Operational Land Imager Data

Xiao-Yan Wang ^{1,2,*}, Jian Wang ², Zhi-Yong Jiang ¹, Hong-Yi Li ² and Xiao-Hua Hao ²

Received: 10 October 2015; Accepted: 11 December 2015; Published: 18 December 2015 Academic Editors: Jose Moreno, Magaly Koch and Prasad S. Thenkabail


- ¹ College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; zhyjiang@lzu.edu.cn
- ² Cold & Arid Region Environmental & Engineering Research Institute, Chinese Academy of Sciences,
- Lanzhou 730000, China; wjian@lzb.ac.cn (J.W.); lihongyi@lzb.ac.cn (H.-Y.L.); haoxh@lzb.ac.cn (X.-H.H.) * Correspondence: wangxiaoy@lzu.edu.cn; Tel.: +86-181-8966-5309

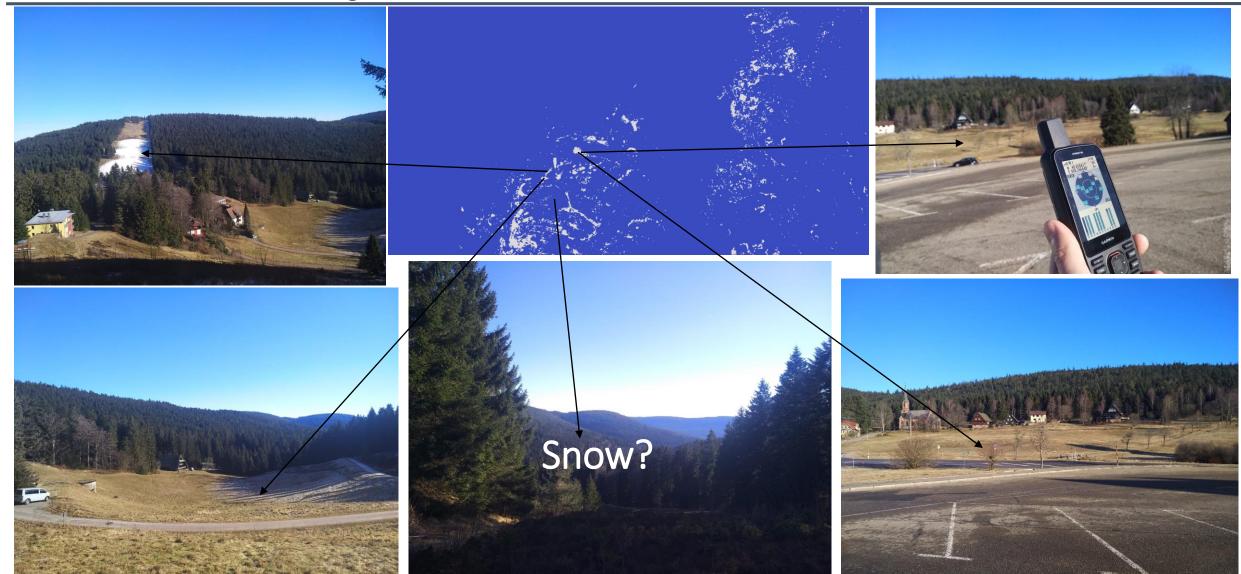
Abstract: The Normalized Difference Snow Index (NDSI) is an effective index for snow-cover mapping at large scales, but in forested regions the identification accuracy for snow using the NDSI is low because of forest cover effects. In this study, typical evergreen coniferous forest zones on Qilian Mountain in the Upper Heihe River Basin (UHRB) were chosen as example regions. By analyzing the spectral signature of snow-covered and snow-free evergreen coniferous forests with Landsat Operational Land Imager (OLI) data, a novel spectral band ratio using near-infrared (NIR) and shortwave infrared (SWIR) bands defined as $(\rho_{nir} - \rho_{swir})/(\rho_{nir} + \rho_{swir})$ is proposed. Our research shows that this band ratio, named the normalized difference forests from snow-free evergreen coniferous forests in UHRB.

Keywords: remote sensing; snow identification; forest; OLI

3.2. Optical Properties of Snow-Covered Forest

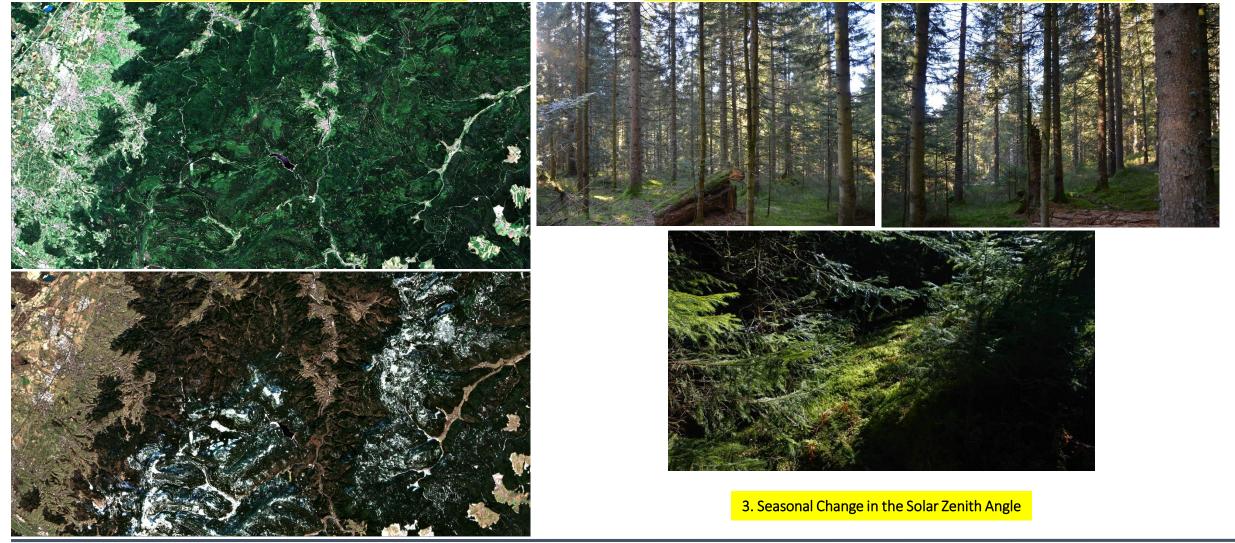
In forests, as trees obscure snow on the ground surface, the spectrum acquired by the sensor is a mixed spectrum that includes snow, canopy, and snow-free ground (if the ground is not fully covered by snow). We only tried to find the spectral difference between snow-covered and snow-free forests in the Landsat OLI images, without considering the complexity of the terrain, the density of the forest, or other factors. Some sample points of snow and snow-covered forest are chosen in Figure 2b. Figure 3a shows the spectral signature of these points. The figure shows that, because of the forest effect, the visible reflectance of snow-covered forest is not as high as that of snow. Accordingly, it can be inferred that the NDSI, which is based on the spectral properties of snow, is not an effective index to extract snow information from forested areas.

Problem Statement: Mapping Snow Under Forest Canopy

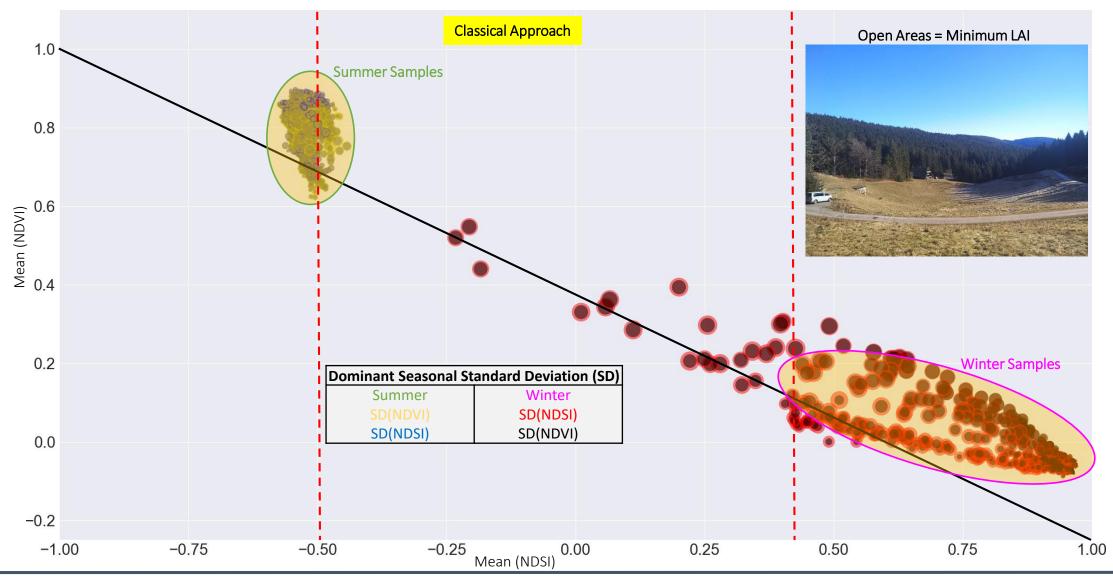


Hundseck Test Site, Black Forest Germany As On 24th February 2019

What Areas Are We Looking At? NDSI Over the Black Forest



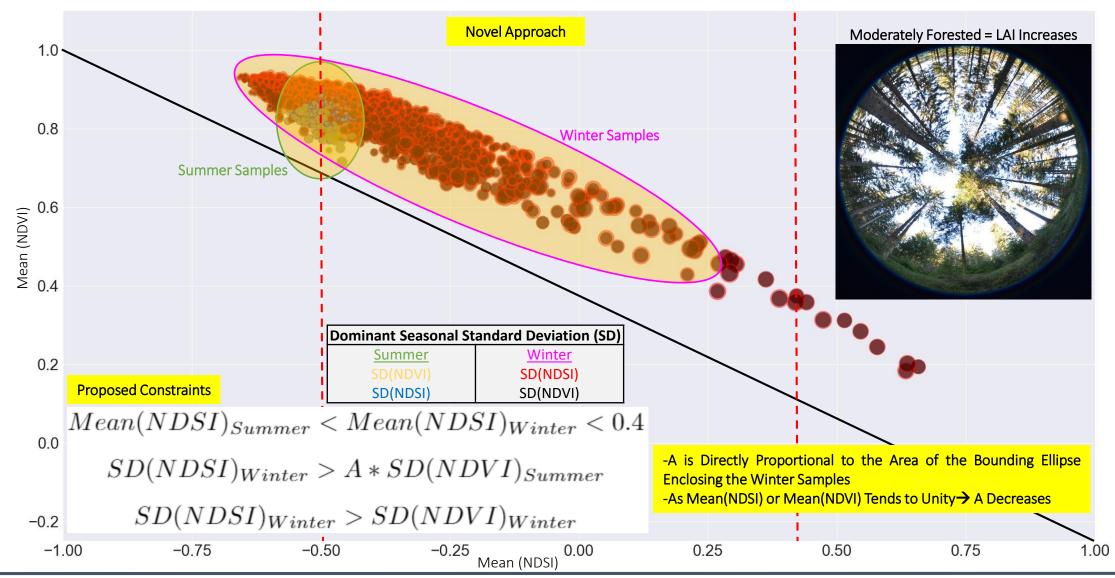
How Does the NDVI Decreases Over Evergreen Forests in Winter?



1. Seasonal Drop in Chlorophyll Activity in the Black Forest

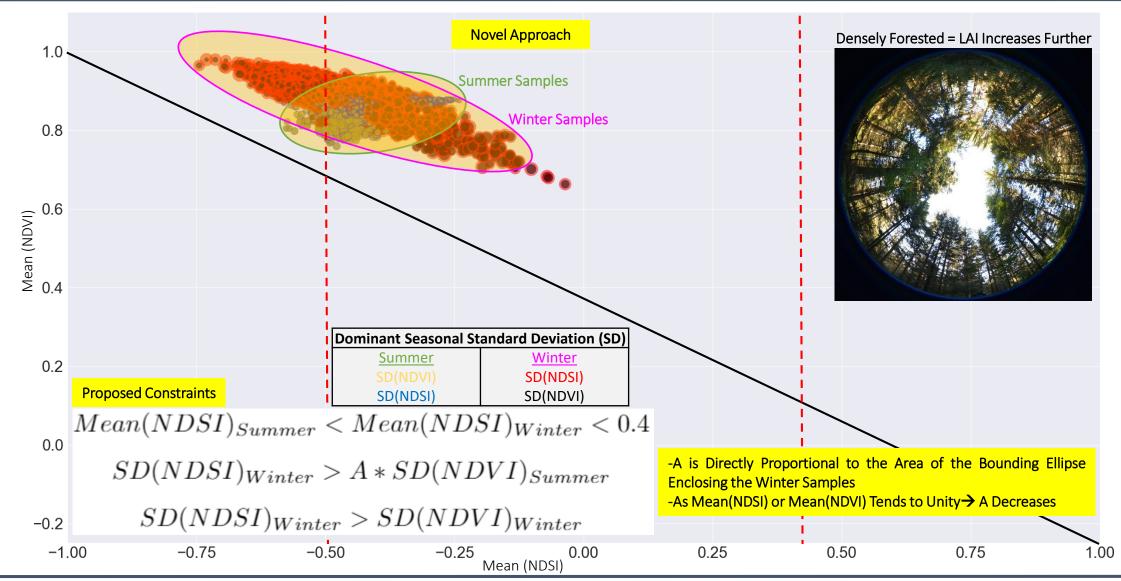
2. Under Canopy Snow Covers Moss on the Forest Floor in the Black Forest

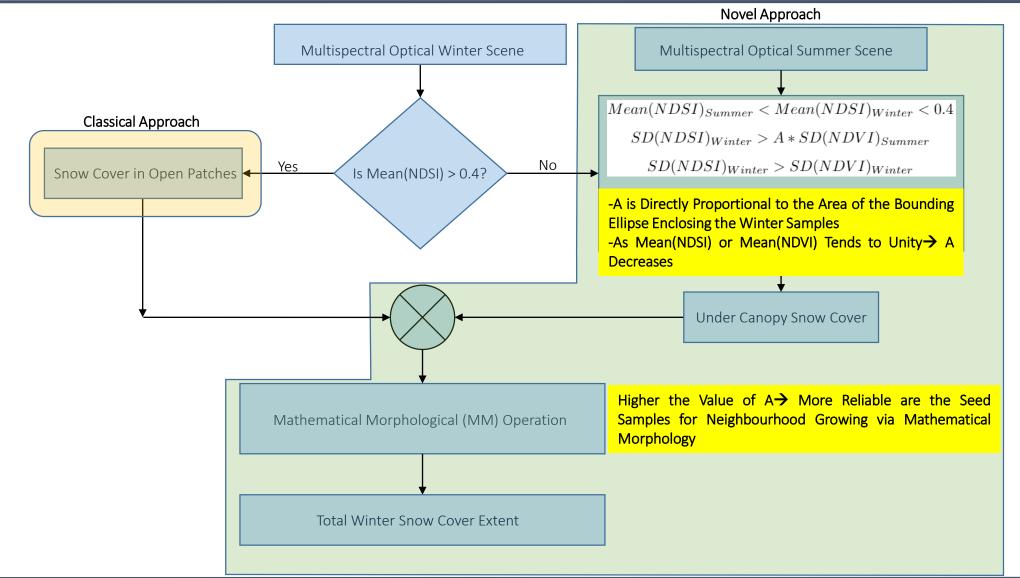
NDSI-NDVI Temporal Statistics: Open Areas



EGU 2020: A Novel Perspective on Mapping Snow Cover Under Forest Canopy With Sentinel-2 Multispectral Optical Satellite Sensor Over Black Forest Germany

GEOGRAPHISCHES INSTITUT HEIDELBERG


NDSI-NDVI Temporal Statistics: Moderately Forested Areas


NDSI-NDVI Temporal Statistics: Densely Forested Areas

Proposed Algorithm

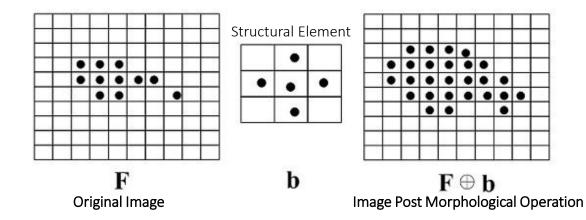


Image Before Morphological Operation

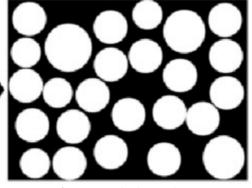
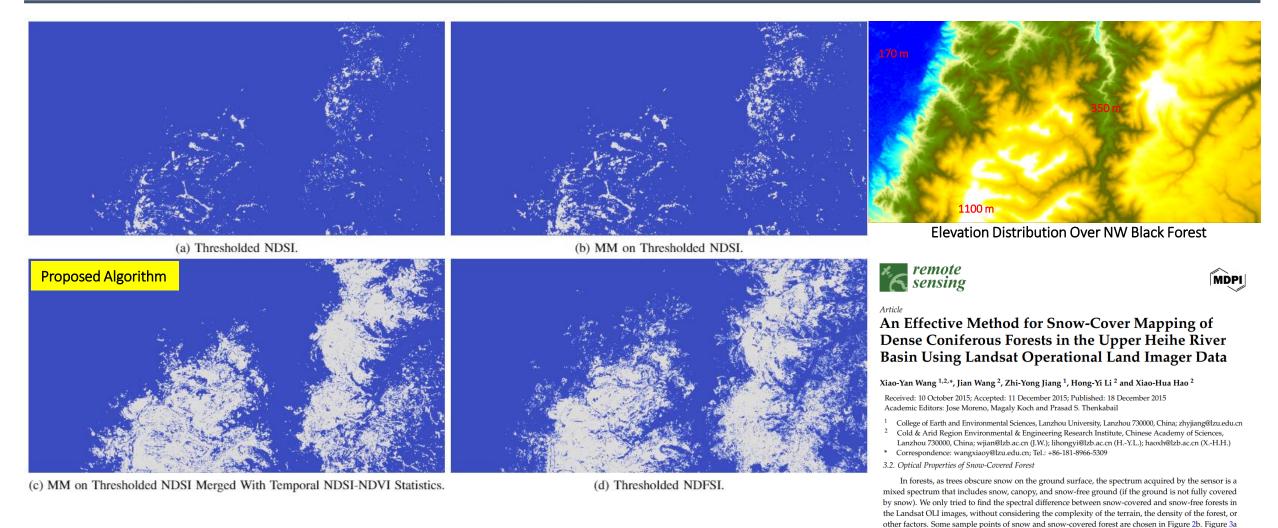



Image After Morphological Operation

Performance & Conclusion

shows the spectral signature of these points. The figure shows that, because of the forest effect, the visible reflectance of snow-covered forest is not as high as that of snow. Accordingly, it can be inferred that the NDSI, which is based on the spectral properties of snow, is not an effective index to extract

snow information from forested areas.

Further Investigations: Relationship Between A & LAI?

Remote Sensing of Environment 113 (2009) 1628-1645

Contents lists available at ScienceDirect Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA

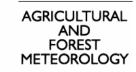
Kaiguang Zhao*, Sorin Popescu

Spatial Sciences Lab, Department of Ecosystem Science and Management, Texas A&M University, College Station, TX-77840, USA

Agricultural and Forest Meteorology 149 (2009) 1152–1160 Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet


Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR

Jeffrey J. Richardson^{a,1}, L. Monika Moskal^a, Soo-Hyung Kim^{a,b,1,*}

^a College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98195-2100, United States ^b University of Washington Botanic Gardens, University of Washington, Box 354115, Seattle, WA 98195-4115, United States

Agricultural and Forest Meteorology xxx (2004) xxx-xxx

www.elsevier.com/locate/agrformet

Short communication

Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests

David Riaño^{a,d,*}, Fernando Valladares^b, Sonia Condés^c, Emilio Chuvieco^d

 ^a Department of Land, Air, and Water Resources, Center for Spatial Technologies and Remote Sensing, U. California, One Shields Avenue Davis, CA 95616-8617, USA
^b Centro de Ciencias Medioambientales, CSIC, Serrano 115, E-28006 Madrid, Spain
^c Department de Economía y Gestión Forestal, ETS de Ingenieros de Montes, Ciudad Universitaria S/N, E-28040 Madrid, Spain
^d Department de Geografía, U. de Alcalá, Colegios 2, E-28801 Alcalá de Henares, Madrid, Spain

Received 7 July 2003; received in revised form 16 December 2003; accepted 15 February 2004

Remote Sensing Opportunities Over the Black Forest

=	Google Scholar	snow cover black forest satellite		
٠	Articles	About 66.100 results (0,11 sec)		INTERNATIONAL JOURNA
	Any time Since 2020 Since 2019 Since 2016 Custom range	Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network T Sauter, B Weitzenkamp International Journal of, 2010 - Wiley Online Library Taken together, NDVI and NDSI provide a strong signal that can be used to classify snow -cover aforests (Klain et al., 1998; Hall et al., 2002) ite He Black Forest The fractional snow cover calculation is applied to the full range of NDSI values (0.0–1.0)	[PDF] wiley.com Full View	Int. J. Climatol. 30: 2330–23 Published online 9 Novembe (wileyonlinelibrary.com) DO
	Sort by relevance Sort by date ✓ include patents □ include citations			Spatio-tempo mountain
	Create alert	MODIS snow-cover products DK Hall, GA Riggs, VV Salomonson Remote sensing of, 2002 - Elsevier (b) Daily title snow-cover product showing snow cover in the Black Hills, South 1967 ATC Chang, JL Foster, DK HallNimbus-7 SMMR derived global snow cover parameters. Annals Scholar. Grody & 8 Basist, 1996 NC Grody, AN BasistGlobal idencoverous ruing SSMI ☆ 99 Cited by 1270 Related articles All 13 versions Web of Science: 749	[PDF] nasa.gov University of Heidelberg	Te
		Improving snow cover mapping in forests through the use of a canopy reflectance model <u>ACK Klein</u> , DK Hall, GA Riggs - Hydrological Processes, 1998 - Wiley Online Library Compared with other land covers, its areal extent varies dramatically on very short time-scales Grey bars are the results for a full resolution TM scene and black bars are type percentages for the seasonally snow-covered portion of North America for February snow cover extent \$\phi\$ 90 Citled by 361 Related articles All 10 versions. Web of Science .211	University of Heidelberg	
		Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests <u>US Komball</u> , KC McDonald, <u>SW Running</u> Remote Sensing of, 2004 - Elsevier within the boreal sites were predominantly composed of mature white and black spruce (Picea steady-state (ie, stable plant and soil C/N pools) forest conditions by These differences were attributed to increased volume scattering effects of snow cover, seasonal reductions in	[PDF] nrcan.gc.ca University of Heidelberg	ABSTRACT: Winter Owing to warming trer snow cover and snow o on Climate Change (IP) duration in the Black
		Spatial downscaling of snow cover as a tool for projections of snow availability for winter sports in 2030 in the Black Forest using remote sensing and GIS methods B Weitzenkamp, T Sauter, A Kraemer, R Roth Geophysical Research, 2008 - core acuk , The results clearly dis-play the topography of the Black Forest with the highest snow Mean deviations of +.2 days per month between measured and modelled snow covers are observable Neuro-Fuzzy Network will be used to estimate monthly mean snow cover in German Low \$p\$ 90 Ched by 2 Related articles 300		duration in the Black F Non-linear AutoRegres System (GIS). With th model. Besides the ge of the spatial resolution
		Snow cover maps with satellite borne SAR: A new approach in harmony with fractional optical SCA retrieval algorithms S Petitiano. <u>E.Mainsa</u> 2006 IEEE International, 2006 - leeexplore leee org exact areas of the Nagler approach cutting the signoid function at 0.6037: so the red areas in figure 7 covers from 100% to 60.37% of snow cover fraction in Current algorithms for mapping of snow-cover darea by SAR are mainly based on the works by Nagler and Rott [2 ☆ 99 Cited by 10 Related articles All 3 versions by		Resolution Imaging Sp snow days (snow cove at 1000–1200 m and 2 by earlier snow melt in snow season would cau
		Development of a technique to assess snow-cover mapping errors from space DK Hall, JL Foster, VV Salomonson on Geoscience and, 2001 - iseexplore isee org 1723-1744, 1998. [6] A Rango. "The response of areal snow cover to climate change in a snowmelt-runoff model," Ann. Glaciol., vol. 25, pp. 232–236, 1997. [7] GE Liston, "Interrelationships between snow distribution, snowmelt, and snowcover depletion: Implications ☆ 99 Citted by 115 Related articles All 7 versions Web of Science: 70 000	[HTML] nasa.gov	snow data and maps c Royal Meteorological KEY WORDS recurrent r change; G
		Subpixel mapping of snow cover in forests by optical remote sensing <u>Divikenmar</u> , R Solberg - Remote Sensing of Environment, 2003 - Elsevier The aerial photo to the left covers mainly birch forest, while the aerial photo to the right shows mainly pine forest. While areas in the TM image are unforested snow-covered areas Wavelength	University of Heidelberg	Received 27 February

INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 30: 2330–2341 (2010) Published online 9 November 2009 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.2043

Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network

Tobias Sauter,* Björn Weitzenkamp and Christoph Schneider Department of Geography, RWTH Aachen University, North Rhine-Westphalia, Germany

tourism is the main economic factor for many different regions in the German Mountain Range. ends experienced in the past and predicted for the future, precise knowledge about the development of duration in the future is becoming more and more important. On the basis of the International Panel PCC) A1B scenario, this paper investigates the possible regional development of snow cover and snow Forest in southwest Germany until 2050. For this purpose, we developed a new method that combines essive networks with eXogenous inputs (NARX) with Remote Sensing and Geographic Information this non-parametric approach, we try to define with preferably high accuracy a simple transferable general problem of developing a robust statistical model, our main focus is on the enhancement on of snow patterns by incorporating complex structures of the underlying terrain using Moderate Spectroradiometer (MODIS) satellite data. The results suggest a possible decrease in the number of $er \ge 10$ cm) in the decade 2041–2050 by 10 to 44% at altitudes higher than 1200 m, by 17 to 57% 25 to 66% at 500–1000 m. This results in a dramatic shortening of the snow season mainly caused initiation rather than by later first snow precipitation in autumn. These considerable changes in the ause enormous losses in the skiing and tourism industries. In this context, the obtained high-resolution can provide a useful tool and decision-making aid for the economy and politics. Copyright © 2009 Society

KEY WORDS recurrent neural network; snow cover prediction; downscaling; Black Forest; skiing; snow pattern; climate change; Germany

Received 27 February 2009; Revised 31 July 2009; Accepted 30 September 2009

Universität Heidelberg: <u>https://www.geog.uni-heidelberg.de/hydro/muhuri.html</u> ResearchGate: <u>https://www.researchgate.net/profile/Arnab_Muhuri</u> LinkedIn: <u>https://www.linkedin.com/in/drarnabmuhuri/</u> Email: <u>arnab.muhuri@alumni.uni-heidelberg.de</u> arnab.muhuri.c2018@iitbombay.org