

Volcanic Aerosol from June 2019 Onward Observed by Raman Lidar

Geraint Vaughan, David Wareing and Hugo Ricketts
National Centre for Atmospheric Science
University of Manchester

UK

Eruption June 22nd 2019, Kuril Islands

Large plume of ash and SO_2 injected into the stratosphere, initially up to 17 km (Calipso) Estimated 1.5 Tg SO_2 . Eruption started 4.00 local time (1800 21^{st} GMT)

Ash dispersion for first 72 hours

 $\widehat{\mathbb{E}}$

Height AGL

Dispersion was slow, with material staying in the vicinity of the eruption for a few weeks

200 hour (8 day) forward trajectories, 13, 15, 17 km

Volcano products in the lower stratosphere stay near the source region up to 30 June

200 hr forward trajectories from 00 h 30 Jun

Volcano products in the lower stratosphere stay near the source region up to 8 July

Lidar measurements

- 355 nm laser beam
- Elastic and Raman channels, single polarisation (parallel)
- Elastic channel configured for stratosphere, signals extend to ~30 km
- Raman channel very noisy in stratosphere
- Nearby contemporaneous radiosonde profile used to generate air-only profiles, fitted to lidar profile above the aerosol
- Allowance for particle extinction made using assumed lidar ratio. Value chosen to return backscatter ratio to 1 where there was no aerosol
- For very long runs (> 10 hrs), average of Raman data allowed independent estimate of optical depth

PyroCu convection? Too early for volcano

Note scale change for 3 July plot: layer at 15 km with maximum backscatter ratio 1.3 and OD .006 (lidar ratio = 40)

Arrival of main aerosol cloud

Sonde is the radiosonde used to calculate the molecular backscatter profile

High-altitude aerosol layer

Optical Depth Evolution

Lidar ratio for PyroCu period (before 10 July) is artificially high because particles are not spherical and lidar does not detect \bot polarisation component

Data before 10 July are too soon for volcanic cloud

Peak Backscatter Ratio

Layer heights

Trickl et al Atmos. Chem. Phys., 13, 5205-5225, 2013

Conclusions

- Raikoke the most significant volcano to affect the stratosphere since Pinatubo
- Still aerosol present measurements continuing but weather has been poor and covid virus now also a problem
- Lidar ratio of 40 consistent with Raman observations