
HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

Flow-dependent sub-seasonal forecast skill for Atlantic-European weather regimes

Dominik Büeler, Julian F. Quinting, Jan Wandel, Christian M. Grams

Institute of Meteorology and Climate Research, Department Troposphere Research, KIT, Germany

Introduction and motivation		Data and methods	
 Sub-seasonal weather forecasts Growing use of operational subseasonal-to-seasonal (S2S; 10 – 60 days) weather forecasts Sub-seasonal forecast skill Low-frequency climate modes such as the stratospheric polar vortex, MJO, ENSO, or SST variations can enhance sub-seasonal forecast skill 		 Model and observational data ECMWF sub-seasonal model from S2S database (Vitart et al., 2017): 4080 refore-casts, 1997 – 2017, 46d lead time, 11 ensemble members, initialized from ERA-Interim ERA-Interim as observational reference 	
due to continuous increase in computational power and	 skill (Robertson & Vitart, 2019) Synoptic-scale activity such as warm 	Weather regime (WR) identification	Brier skill score (BSS)

- improvement of NWP models
- Sub-seasonal forecasts hardly have **skill** for local day-to-day weather but **rather for weather** variability on regional and multi-daily scales, which is represented by weather regimes (WR)

Fig. 1a from White et al. (2017): Qualitative estimate of forecast skill for different forecast ranges and corresponding predictability sources

conveyor belts (WCBs) can potentially dilute (sub-seasonal) forecast skill (e.g., Grams et al., 2018)

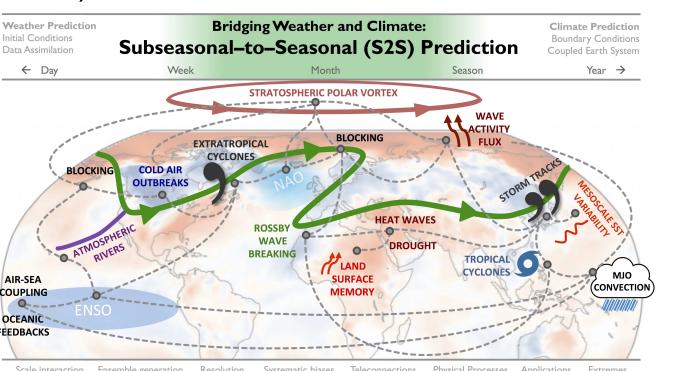
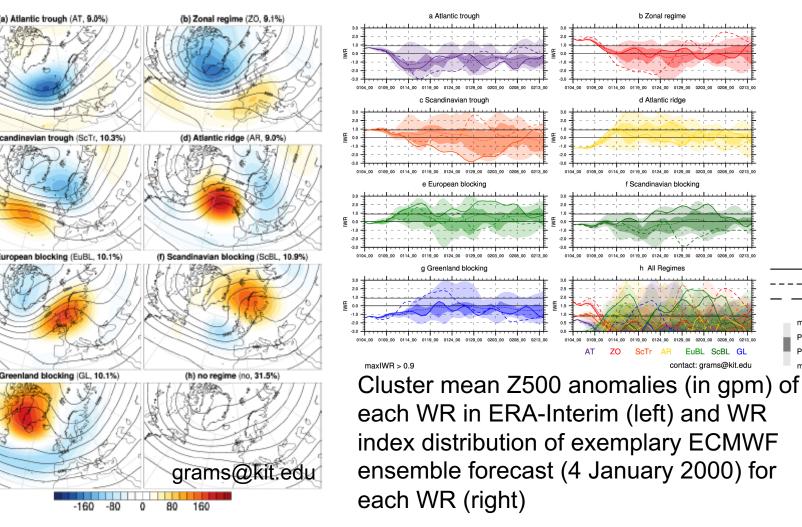
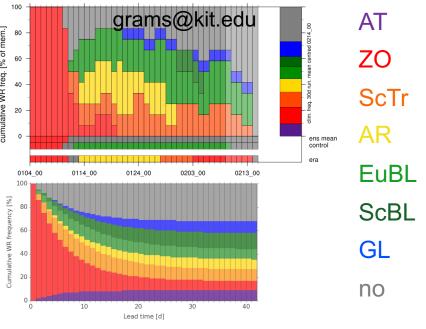


Fig. 1 from Lang et al. (2020): Schematic of various lowfrequency and synoptic-scale processes influencing subseasonal predictability and thus forecast skill

 Previous studies investigated sub-seasonal forecast skill for classical 4 Atlantic-**European WR** (NAO+, NAO-, blocking, Atlantic ridge; e.g., Ferranti et al., 2018)

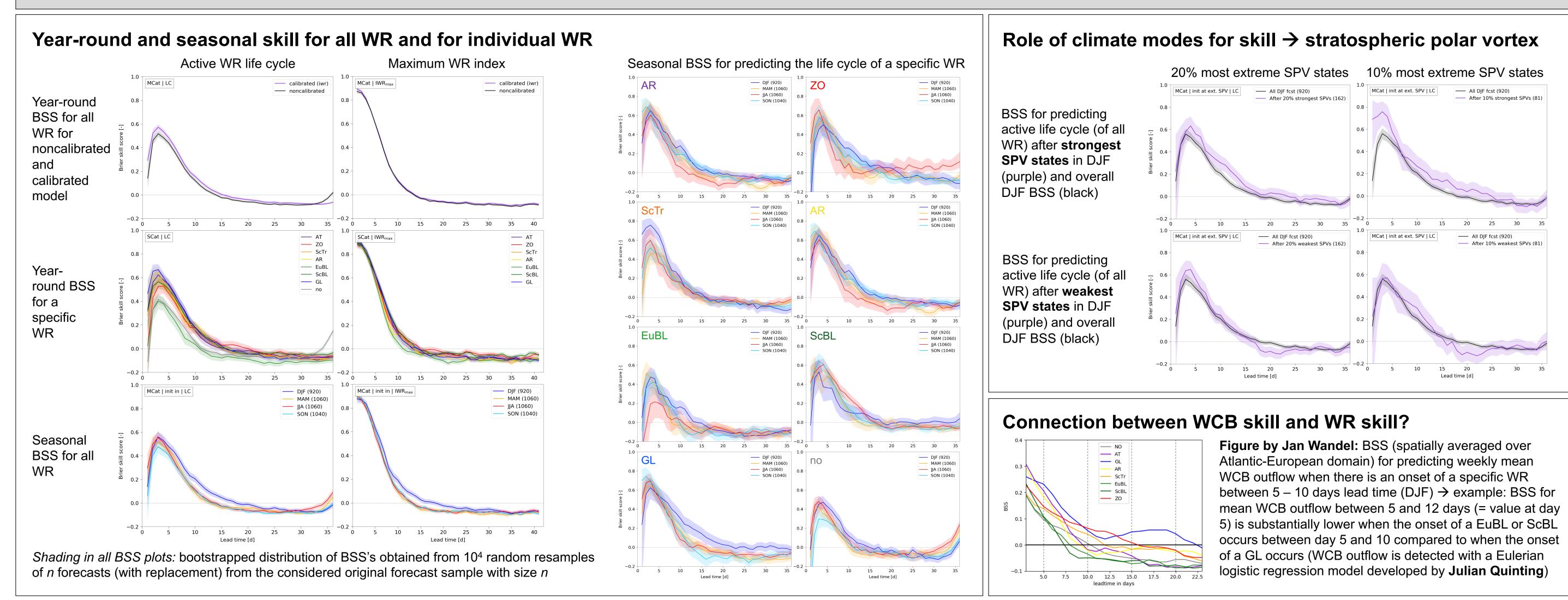

Research questions

- What is the flow-dependent sub-seasonal (re)forecast skill of ECMWF in predicting 7 Atlantic-European WR?
- How do low-frequency climate modes such as synoptic-scale activity affect this flow-dependent forecast skill?


- New definition of 7 year-round Atlantic-European **WR**, with certain benefits compared to classical 4 WR (e.g. Grams et al., 2017; Beerli & Grams, 2019)
- WR identification (see also Grams et al., 2017)
- EOF analysis of 5-day low-pass filtered **Z500** anomalies in ERA-Interim (1979 – 2018)

 \rightarrow k-means clustering in EOF space \rightarrow 7 WR

- Projection of Z500 anomalies (of model and ERA-Interim) on 7 cluster mean anomalies \rightarrow WR index I_{WR} (following Michel & Rivière, 2011) \rightarrow calibrate **WR index** (by removing WR index bias)
- Define active WR life cycle if maximum WR index is above a threshold ($I_{WR} > 0.9$) for at least 5 consecutive days \rightarrow "no regime" if no WR is active



- How well does the model ensemble predict the active WR compared to a climatological reference forecast?
- Reference forecast is based on day-to-day transition climatology in ERA-Interim and WR at initial time
- BSS = 1 => perfect, BSS
- **= 0** => equally good as reference, **BSS < 0** => worse than reference

Relative number of ensemble members attributed to one of the 7 WR (or to no regime) in the exemplary forecast (top) and corresponding climatological reference forecast determined by WR at initial time (bottom)

Results

First conclusions

Outlook

• Overall year-round skill (BSS) for predicting life cycles of 7 Atlantic-European WR vanishes beyond ~15 days and a few days later if model is calibrated flow-dependently

- However, skill substantially varies for different flow situations and seasons, such as for example:
 - Year-round skill for EuBL life cycles vanishes ~5 days earlier than skill for all other WR (including ScBL)
 - → problem of model in forecasting blocking life cycles (see also, e.g., Quinting & Vitart, 2019)
 - Skill in winter vanishes ~5 days later than in other seasons, but this differs strongly between different WR (for example, it is not the case for ScTr and ScBL)
- Substantial effects from anomalous states of climate modes: for example, skill vanishes several days later after strong compared to weak winter stratospheric polar vortex states (see also Büeler et al., 2020; Domeisen et al., 2020)
- Synoptic activity: skill for weekly mean WCB outflow varies strongly before / during different WR onsets

• Analyze additional skill scores for (scalar) WR index

- Investigate effects of further climate modes on skill
- Systematically link WR skill to WCB skill (led by Jan Wandel): Can differences in WCB skill explain differences in skill for different WR, or more precisely, for their onset, maintenance, and decay? \rightarrow For example: Is the lower skill for EuBL due to a bias in WCB outflow before its onset? In contrast, what is the role of WCB outflow for ScBL, whose skill is significantly higher?

References

Beerli and Grams, 2019: Stratospheric modulation of the large-scale circulation in the Atlantic-European region and its implications for surface weather events. QJRSM, 145, 3732-3750 Büeler et al., 2020: Stratospheric influence on ECMWF sub-seasonal forecast skill for energy-industry-relevant surface weather in European countries. In review at QJRMS. Domeisen et al., 2020: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. JGRA, 125, e2019JD030923 Ferranti et al., 2018: How far in advance can we predict changes in large-scale flow leading to severe cold conditions over Europe? *QJRMS*, **144**, 1788-1802 Grams et al., 2017: Balancing Europe's wind-power output through spatial deployment informed by weather regimes. NCC, 7, 557-562 Grams et al., 2018: An atmospheric dynamics perspective on the amplification and propagation of forecast error in numerical weather prediction models: a case study. QJRMS, 144, 2577-2591

Lang et al., 2020: Introduction to special collection: Bridging weather and climate: subseasonal-to-seasonal (S2S) prediction. <i>JGRA</i> , 125 , 1-7 Michel and Rivière, 2011: The Link between Rossby wave breakings and weather regime transitions. <i>JAS</i> , 68 , 1730–1748 Quinting and Vitart, 2019: Representation of synoptic-scale Rossby wave packets and blocking in the S2S Prediction Project Database. <i>GRL</i> , 46 , 1070-1078 Robertson and Vitart, 2019: Sub-seasonal to seasonal prediction - the gap between weather and climate forecasting. <i>Elsevier</i> Vitart et al., 2017: The subseasonal to seasonal (S2S) prediction project database. <i>BAMS</i> ., 98 , 163-173	
Vitart et al., 2017: The subseasonal to seasonal (S2S) prediction project database. <i>BAMS.</i> , 98 , 163-173 White et al., 2017: Potential applications of subseasonal-to-seasonal (S2S) predictions. <i>MA</i> , 24 , 315-325	
While of al., 2017.1 of orthan applications of subscasonal (020) predictions. MA, 24 , 010-020	

Acknowledgments

The contribution of all authors was funded by the Helmholtz Association as part of the Young Investigator Group "SPREADOUT" (grant VH-NG-1243)

