EGU General Assembly Online NP5.4 Session - 8th May 2020

Correcting for Model Changes in Statistical Post-Processing - An approach based on Response Theory

Jonathan Demaeyer & Stéphane Vannitsem

Royal Meteorological Institute of Belgium

Model Output Statistics techniques

Statistical Post-processing of forecasts in developed to improve their quality based on information gathered from past forecasts

- 'Deterministic' approach: Linear techniques (Classical MOS, perfect prog), Kalman filtering
- 'Deterministic' approach: Nonlinear techniques (Neural networks, nonlinear fits, Machine Learning)
- Probabilistic approaches: use of deterministic precipitation forecasts
- (True) Probabilistic approaches: Calibration of the ensemble forecasts.

The Linear MOS technique

Linear regression between a set of observables of forecasts and observations

$$X_{C}(t) = \alpha(t) + \sum_{i=1}^{n} \beta_{i}(t)V_{i}(t)$$

$$T=0$$

$$T=t$$

$$T=t$$

$$Model$$

$$J(t) = \sum_{k=1}^{M} (X_{C,k}(t) - X_{k}(t))^{2}$$

$$M \text{ past forecasts}$$

$$\alpha(t) = \langle X(t) \rangle - \beta(t) \langle V(t) \rangle$$

$$\beta(t) = \frac{\langle X(t)V(t) \rangle - \langle X(t) \rangle \langle V(t) \rangle}{\langle V(t)^{2} \rangle - \langle V(t) \rangle^{2}}$$

Error in Variable MOS

 $V = \varsigma + \delta$ $X = \alpha + \beta \varsigma + \kappa$ Intermediate cost function: $J(t) = \sum_{k=1}^{M} \frac{(V_k(t) - \varsigma_k(t))^2}{\sigma_{\delta}^2(t)} + \sum_{k=1}^{M} \frac{(X_k(t) - (\alpha + \beta \varsigma_k(t)))^2}{\sigma_{\kappa}^2(t)}$ $J(t) = \sum_{k=1}^{M} \frac{(\alpha(t) + \beta(t)V_k(t)) - X_k(t))^2}{\sigma_{\kappa}^2(t) + \beta^2(t)\sigma_{\delta}^2(t)}$

One 'free' parameter:

$$\lambda = \frac{\sigma_{\delta}^2}{\sigma_{\kappa}^2} \text{ fixed to } \frac{\sigma_{V}^2}{\sigma_{X}^2}$$

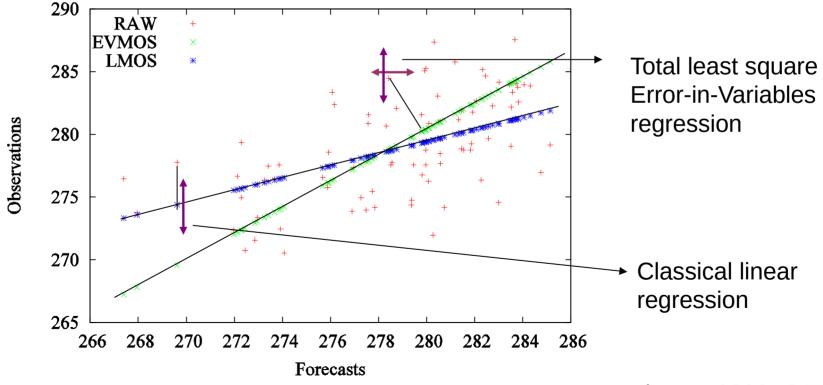
Needs some knowledge about the sources of errors

$$\alpha(t) = \langle X(t) \rangle - \beta(t) \langle V(t) \rangle$$
$$\beta(t) = \sqrt{\frac{\langle X(t)^2 \rangle - \langle X(t) \rangle^2}{\langle V(t)^2 \rangle - \langle V(t) \rangle^2}} = \sqrt{\frac{\sigma_X^2(t)}{\sigma_V^2(t)}}$$

Minimization

Illustration

Lead time: 240 hours, Initial time: 12



Vannitsem, 2009, QJRMS

Forecasting system changes

ECMWF

Implementation date	Summary of changes	Resolution	Full IFS documentation		
11-Jun-2019	Cycle 46r1	Unchanged	CY46R1		
05-Jun-18	Cycle 45r1	Unchanged	CY45R1		
05-Nov-2017	ECMWF's new long-range fo recasting system SEAS5	Unchanged	Documentation		
11-Jul-17	Cycle 43r3	Unchanged	<u>CY43R3</u>		
22-Nov-16	Cycle 43r1	Ocean (Horizontal & vertical)	CY43R1		
08-Mar-16	Cycle 41r2	HRES/ENS/WAVE (Horizontal)	CY41R2		
12-May-15	Cycle 41r1	Unchanged	CY41R1		
1-Dec-13	Tropical cyclone trajectory	Unchanged			
19-Nov-13	Cycle 40r1	ENS (Vertical)	CY40R1		
26-Jun-13	Cycle 38r2	HRES (Vertical)			

How to deal with model changes?

- Reforecasts (ECMWF, NOAA...)
- Using an adaptive method which progressively improve when more new forecasts are issued (e.g. UMOS, Wilson & Vallée, 2002)
- Other methods?
 - Linear Response Theory (Ruelle, 1998)

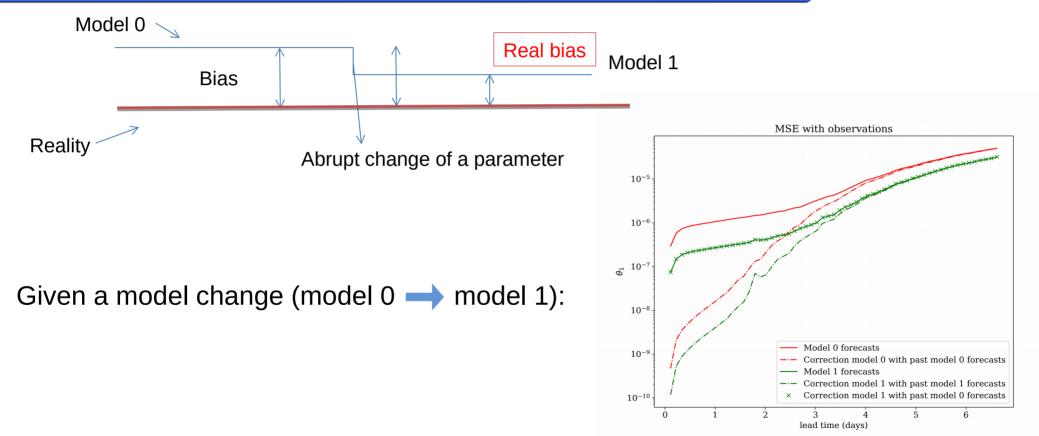
Objective of the current presentation

Reforecasts are expensive

Done on a global scale by ECMWF and NOAA (GEFS model)

Is it possible to approach the problem in a different way? Can we avoid using and computing reforecasts?

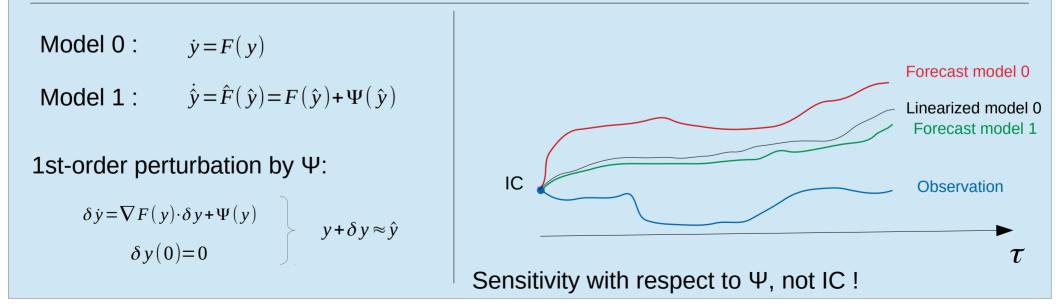
Impact of model changes



A new approach to avoid reforecasting

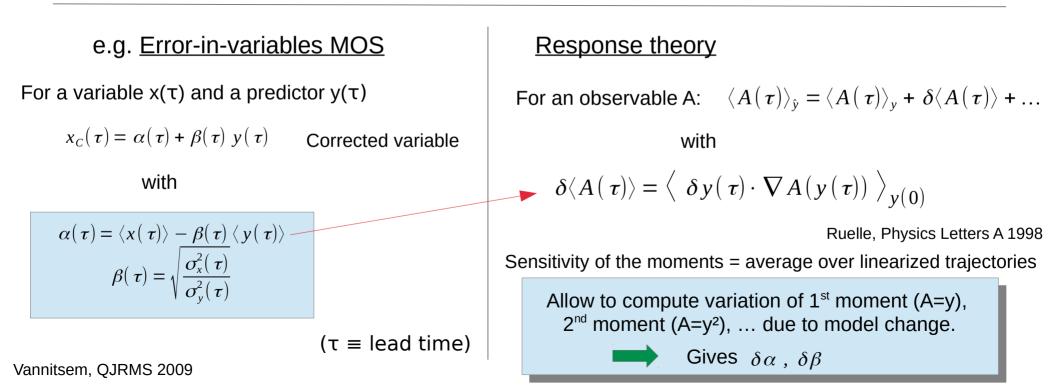
... while still taking the model change into account: Response theory

- Idea: Given a model change (model $0 \rightarrow \text{model } 1$)
 - assuming the model change is an analytic function Ψ , perform a sensitivity analysis



Response theory and post-processing

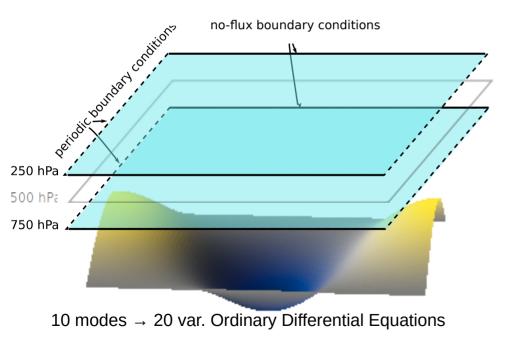
Post-processing typically involves statistical moments !



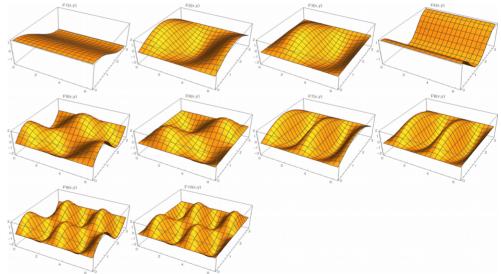
Application to an idealized atmospheric model

RMI

Spectral 2-layer QG model on a β -plane with an orography at mid-latitude



Streamfunction + Temperature



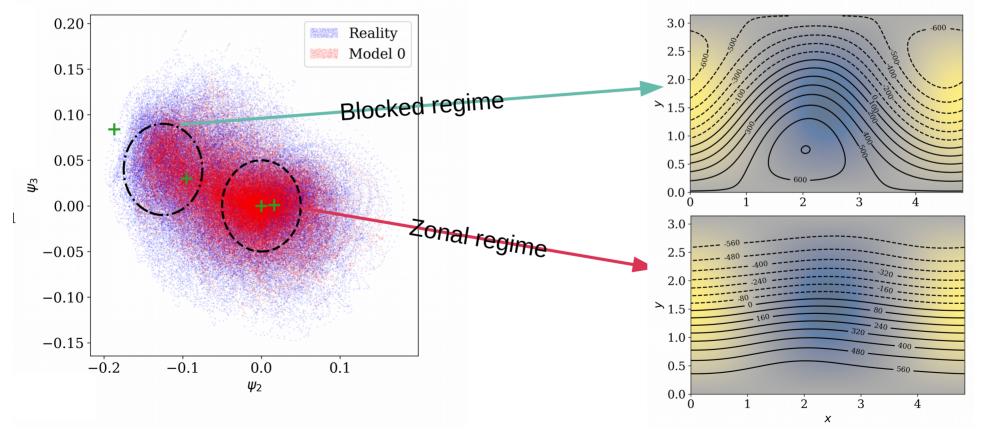
Reinhold & Pierrehumbert, Monthly Weather Review 1982

Computed with the qgs model:

https://github.com/Climdyn/qgs

Dynamics of the idealized atmospheric model

Geopot. height anomaly (m) at 500 hPa



Post-processing experiments

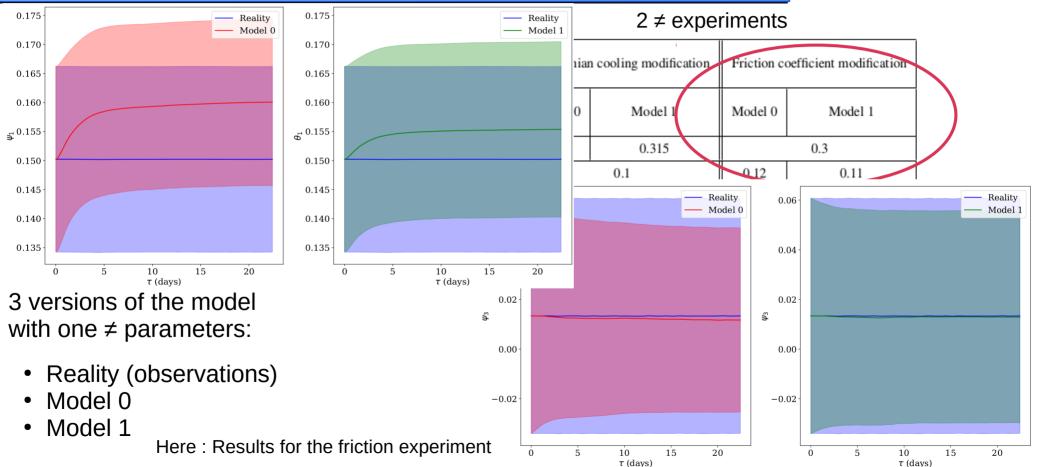
$2 \neq$ experiments

Experiment Parameter description			Newtonian cooling modification		Friction coefficient modification		
	System Symbol	Reality	Model 0	Model 1	Model 0	Model 1	
Newtonian cooling coefficient	h_d	0.3	0.33	0.33 0.315		0.3	
Atm. layers friction	k_d	0.1	0.1		0.12	0.11	
Bottom layer friction	k'_d	0.01					
Domain aspect ratio	n	1.3					
Meridional temperature gradient	θ_2^{\star}	0.2					
Mountain ridge altitude	h_2	0.4					

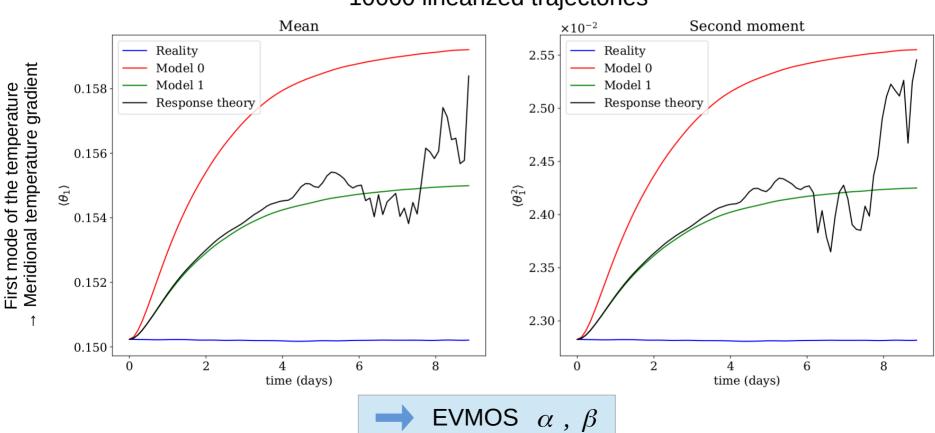
3 versions of the model with one \neq parameters:

- Reality (observations)
- Model 0
- Model 1

Post-processing experiments

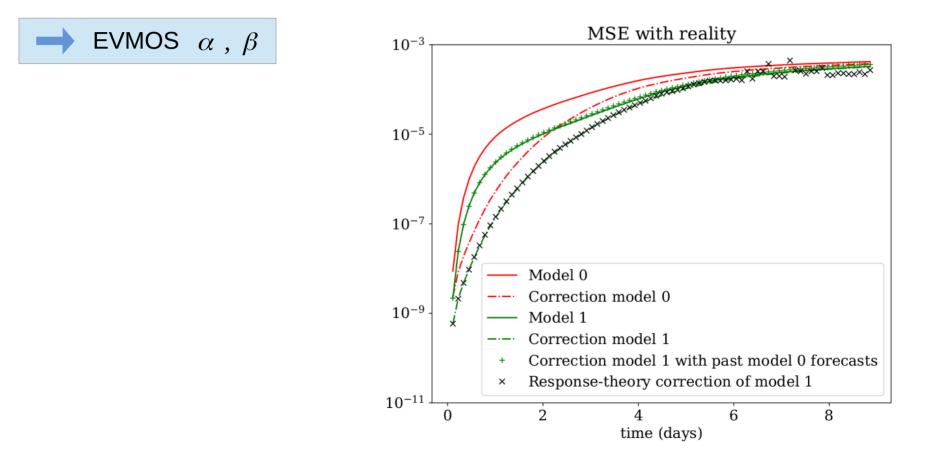


Correction of the moments



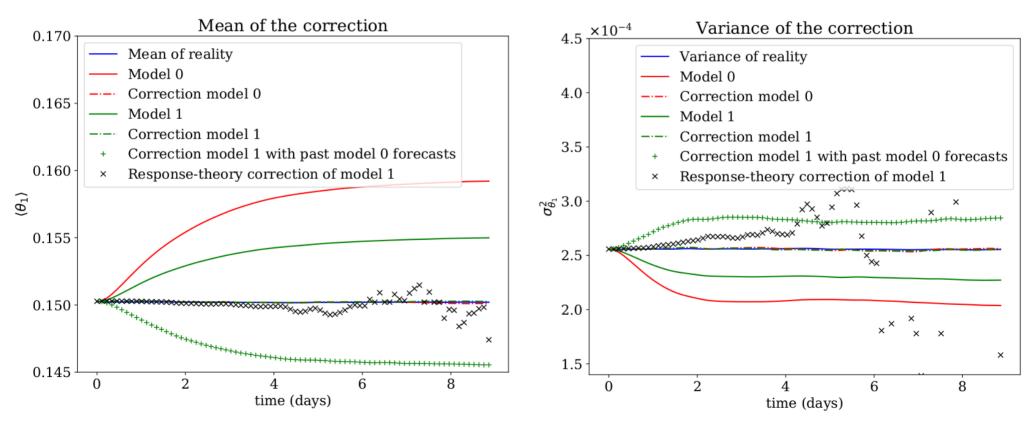
10000 linearized trajectories

Correction of the moments → Post-processing

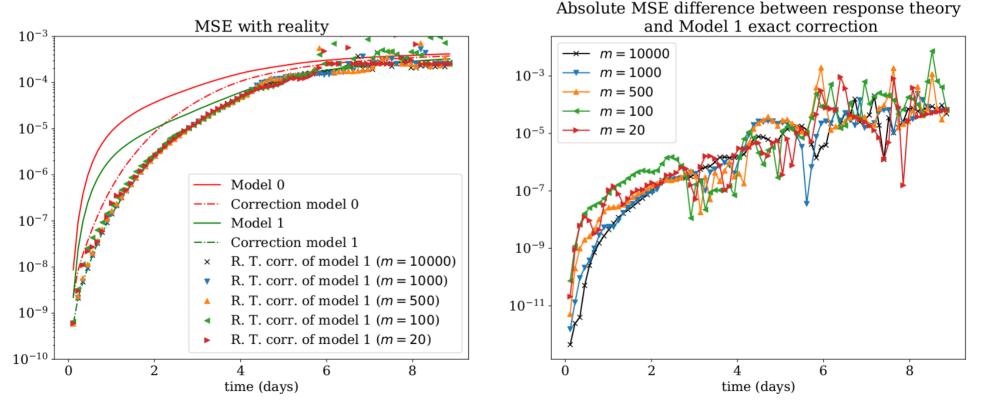


Correction of the mean and the variance

Good but Response Theory deteriorates after 4 days



Impact of the number *m* of trajectories



Good results even with 20 linearized trajectories \rightarrow Open question: competitive with reforecasts?

Conclusions & Outlook

- Response theory allows to correct model changes in PP schemes accurately
- Needs a linearized model (tangent model)
- Alternative to reforecasts
- Can be extended to ensemble forecasts and other methods
- Results published in:

Demaeyer, J. and Vannitsem, S.: Nonlin. Processes Geophys. Discuss., in review, 2019.

https://doi.org/10.5194/npg-2019-57

What next?

- Test in operational setups? \rightarrow Competitiveness with direct reforecasts?
- Other PP frameworks

Advertisement

Computation performed with the new qgs model.

Calculation notebooks: https://github.com/jodemaey/Postprocessing_and_response_theory_notebooks

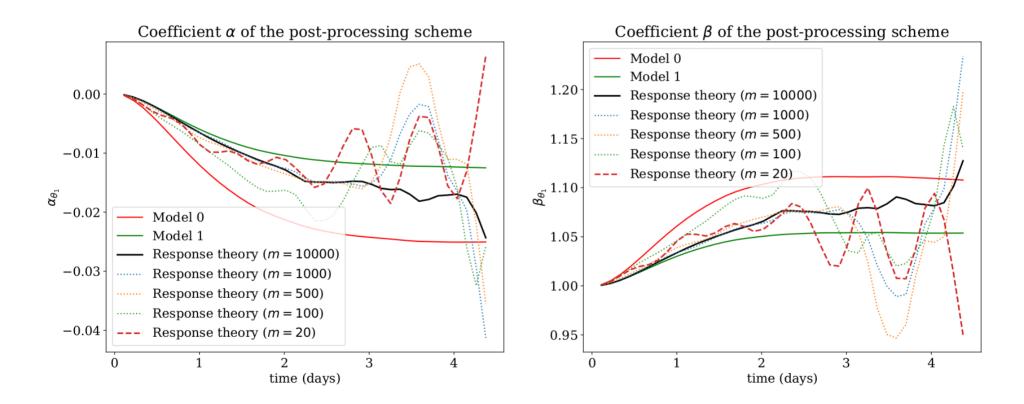
Model freely available at:

https://github.com/Climdyn/qgs

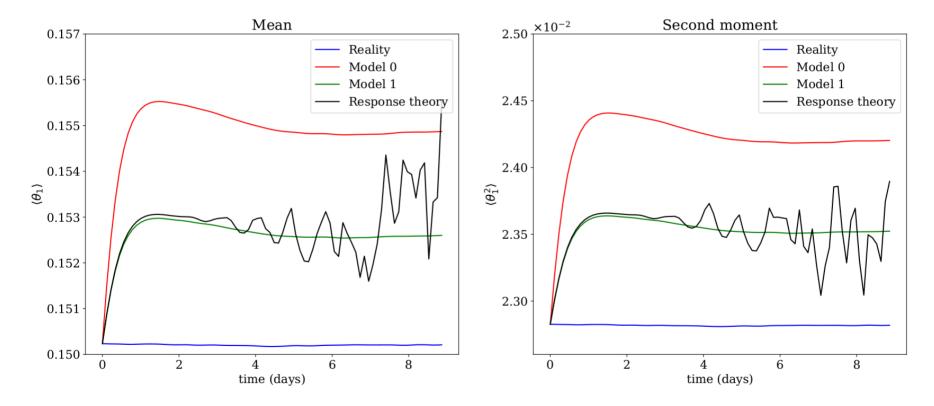
https://qgs.readthedocs.io/en/latest/

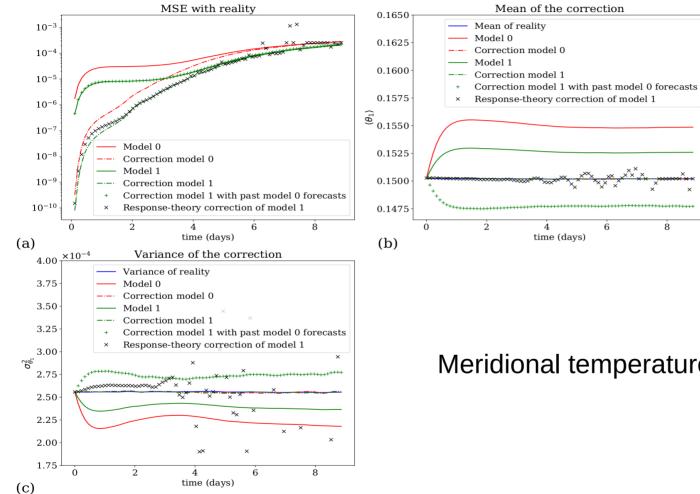
Additional materials

EVMOS α and β



Meridional temperature gradient experiment



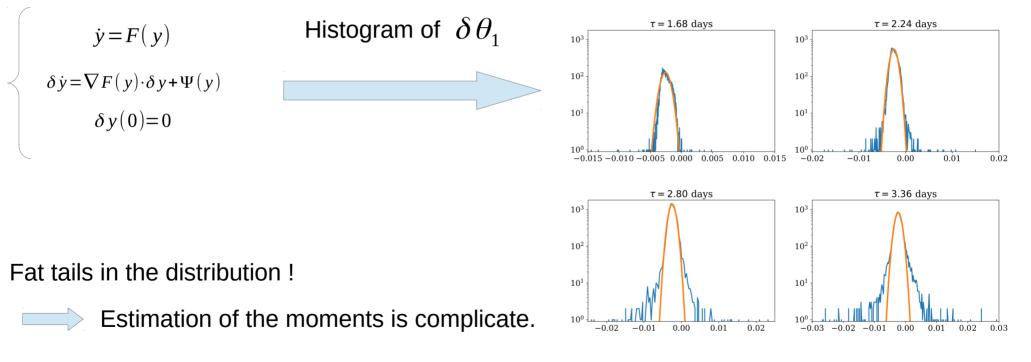


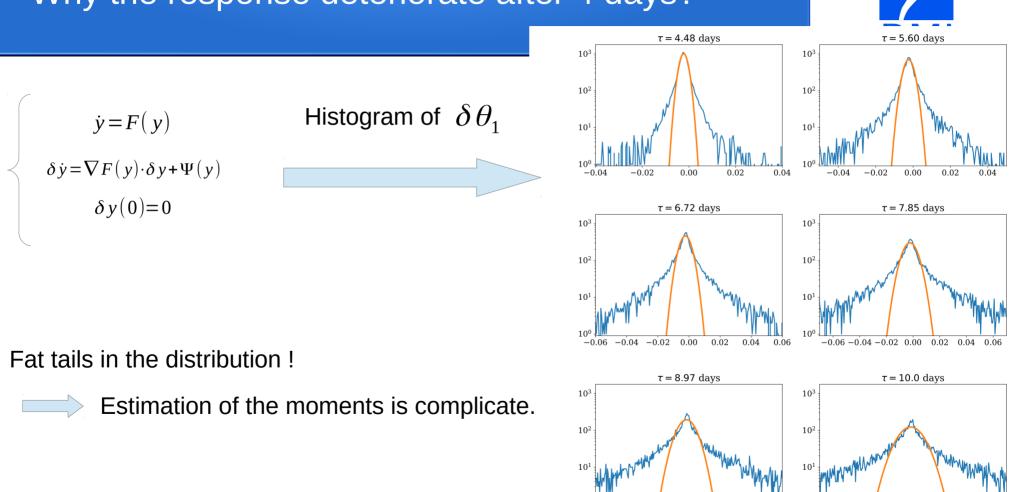
Meridional temperature gradient experiment

8

Why the response deteriorate after 4 days?

Histogram of $\delta \theta_1(\tau)$





-0.075-0.050-0.025 0.000 0.025 0.050 0.075

-0.05

0.00

0.05

Why the response deteriorate after 4 days?